1
|
Ho CS, Wong CTH, Aung TT, Lakshminarayanan R, Mehta JS, Rauz S, McNally A, Kintses B, Peacock SJ, de la Fuente-Nunez C, Hancock REW, Ting DSJ. Antimicrobial resistance: a concise update. THE LANCET. MICROBE 2025; 6:100947. [PMID: 39305919 DOI: 10.1016/j.lanmic.2024.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 01/04/2025]
Abstract
Antimicrobial resistance (AMR) is a serious threat to global public health, with approximately 5 million deaths associated with bacterial AMR in 2019. Tackling AMR requires a multifaceted and cohesive approach that ranges from increased understanding of mechanisms and drivers at the individual and population levels, AMR surveillance, antimicrobial stewardship, improved infection prevention and control measures, and strengthened global policies and funding to development of novel antimicrobial therapeutic strategies. In this rapidly advancing field, this Review provides a concise update on AMR, encompassing epidemiology, evolution, underlying mechanisms (primarily those related to last-line or newer generation of antibiotics), infection prevention and control measures, access to antibiotics, antimicrobial stewardship, AMR surveillance, and emerging non-antibiotic therapeutic approaches. The Review also discusses the potential roles of artificial intelligence in addressing AMR, including antimicrobial susceptibility testing, AMR surveillance, antimicrobial stewardship, diagnosis, and antimicrobial drug discovery and development. This Review highlights the urgent need for addressing the global effects of AMR and for rapid advancement of relevant technology in this dynamic field.
Collapse
Affiliation(s)
- Charlotte S Ho
- Department of Ophthalmology, Western Eye Hospital, London, UK
| | | | - Thet Tun Aung
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore
| | - Jodhbir S Mehta
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Balint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Department of Psychiatry and Department of Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering and Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | - Darren S J Ting
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK; Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Xie X, Liu Z, Huang J, Wang X, Tian Y, Xu P, Zheng G. Molecular epidemiology and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a hospital in Fujian, China. Front Microbiol 2024; 15:1431154. [PMID: 39301190 PMCID: PMC11410579 DOI: 10.3389/fmicb.2024.1431154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
The worldwide spread of Pseudomonas aeruginosa, especially carbapenem-resistant P. aeruginosa (CRPA), poses a serious threat to global public health. In this research, we collected and studied the clinical prevalence, molecular epidemiology, and resistance mechanisms of CRPA in Fujian, China. Among 167 non-duplicated P. aeruginosa isolates collected during 2019-2021, strains from respiratory specimens and wound secretions of older males in the intensive care unit dominated. Ninety-eight isolates (58.7 %) were resistant to at least one tested antibiotic, among which 70 strains were carbapenem-resistant. Moleclar typing of the CRPA isolates revealed they were highly divergent, belonging to 46 different sequence types. It is noteworthy that two previously reported high risk clones, ST1971 specific to China and the globally prevalent ST357, were found. Several carbapenem resistance-related characteristics were also explored in 70 CRPA isolates. Firstly, carbapenemase was phenotypically positive in 22.9 % of CRPA, genetically predominant by metallo-β-lactamase (MBL) and co-carrige of different carbapenemase genes. Then, mutations of the carbapenem-specific porins oprD and opdP were commonly observed, with frequencies of 97.1% and 100.0%, respectively. Furthermore, the biofilm formation and relative transcription levels of 8 multidrug efflux pump genes were also found to be increased in 48.6 % and 72.9 % of CRPA isolates compared to the reference strain PAO1. These findings will help fill the data gaps in molecular characteristics of CRPA on the southeastern coast of China and emphasize the urgent need for data-based specific stewardship for antipseudomonal practices to prevent the dissemination of CRPA.
Collapse
Affiliation(s)
- Xueqin Xie
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Provincial Key Laboratory of Functional and Clinical Translational Medicine of Universities in Fujian, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Zhou Liu
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Provincial Key Laboratory of Functional and Clinical Translational Medicine of Universities in Fujian, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Jingyan Huang
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Xueting Wang
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Yuting Tian
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Pinying Xu
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Gangsen Zheng
- Xiamen Key Laboratory of Genetic Testing, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Liu YS, Zhang C, Khoo BL, Hao P, Chua SL. Dual-species proteomics and targeted intervention of animal-pathogen interactions. J Adv Res 2024:S2090-1232(24)00383-7. [PMID: 39233003 DOI: 10.1016/j.jare.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Host-microbe interactions are important to human health and ecosystems globally, so elucidating the complex host-microbe interactions and associated protein expressions drives the need to develop sensitive and accurate biochemical techniques. Current proteomics techniques reveal information from the point of view of either the host or microbe, but do not provide data on the corresponding partner. Moreover, it remains challenging to simultaneously study host-microbe proteomes that reflect the direct competition between host and microbe. This raises the need to develop a dual-species proteomics method for host-microbe interactions. OBJECTIVES We aim to establish a forward + reverse Stable Isotope Labeling with Amino acids in Cell culture (SILAC) proteomics approach to simultaneously label and quantify newly-expressed proteins of host and microbe without physical isolation, for investigating mechanisms in direct host-microbe interactions. METHODS Using Caenorhabditis elegans-Pseudomonas aeruginosa infection model as proof-of-concept, we employed SILAC proteomics and molecular pathway analysis to characterize the differentially-expressed microbial and host proteins. We then used molecular docking and chemical characterization to identify chemical inhibitors that intercept host-microbe interactions and eliminate microbial infection. RESULTS Based on our proteomics results, we studied the iron competition between pathogen iron scavenger and host iron uptake protein, where P. aeruginosa upregulated pyoverdine synthesis protein (PvdA) (fold-change of 5.2313) and secreted pyoverdine, and C. elegans expressed ferritin (FTN-2) (fold-change of 3.4057). Targeted intervention of iron competition was achieved using Galangin, a ginger-derived phytochemical that inhibited pyoverdine production and biofilm formation in P. aeruginosa. The Galangin-ciprofloxacin combinatorial therapy could eliminate P. aeruginosa biofilms in a fish wound infection model, and enabled animal survival. CONCLUSION Our work provides a novel SILAC-based proteomics method that can simultaneously evaluate host and microbe proteomes, with future applications in higher host organisms and other microbial species. It also provides insights into the mechanisms dictating host-microbe interactions, offering novel strategies for anti-infective therapy.
Collapse
Affiliation(s)
- Yang Sylvia Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Chengqian Zhang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Special Administrative Region; City University of Hong Kong-Shenzhen Futian Research Institute, Shenzhen, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Ma Y, Tang WS, Liu SY, Khoo BL, Chua SL. Juglone as a Natural Quorum Sensing Inhibitor against Pseudomonas aeruginosa pqs-Mediated Virulence and Biofilms. ACS Pharmacol Transl Sci 2024; 7:533-543. [PMID: 38357290 PMCID: PMC10863437 DOI: 10.1021/acsptsci.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Pseudomonas aeruginosa is a notorious opportunistic pathogen associated with chronic biofilm-related infections, posing a significant challenge to effective treatment strategies. Quorum sensing (QS) and biofilm formation are critical virulence factors employed by P. aeruginosa, contributing to its pathogenicity and antibiotic resistance. Other than the homoserine-based QS systems, P. aeruginosa also possesses the quinolone-based Pseudomonas quinolone signal (PQS) QS signaling. Synthesis of the PQS signaling molecule is achieved by the pqsABCDEH operon, whereas the PQS signaling response was mediated by the PqsR receptor. In this study, we report the discovery of a novel natural compound, Juglone, with potent inhibitory effects on pqs QS and biofilm formation in P. aeruginosa. Through an extensive screening of natural compounds from diverse sources, we identified Juglone, a natural compound from walnut, as a promising candidate. We showed that Juglone could inhibit PqsR and the molecular docking results revealed that Juglone could potentially bind to the PqsR active site. Furthermore, Juglone could inhibit pqs-regulated virulence factors, such as pyocyanin and the PQS QS signaling molecule. Juglone could also significantly reduce both the quantity and quality of P. aeruginosa biofilms. Notably, this compound exhibited minimal cytotoxicity toward mammalian cells, suggesting its potential safety for therapeutic applications. To explore the clinical relevance of Juglone, we investigated its combinatorial effects with colistin, a commonly used antibiotic against P. aeruginosa infections. The Juglone-colistin combinatorial treatment could eliminate biofilms formed by wild-type P. aeruginosa PAO1 and its clinical isolates collected from cystic fibrosis patients. The Juglone-colistin combinatorial therapy dramatically improved colistin efficacy and reduced inflammation in a wound infection model, indicating its potential for clinical utility. In conclusion, the discovery of Juglone provides insights into the development of innovative antivirulence therapeutic strategies to combat P. aeruginosa biofilm-associated infections.
Collapse
Affiliation(s)
- Yeping Ma
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Wing Suet Tang
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Sylvia Yang Liu
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Bee Luan Khoo
- Department
of Biomedical Engineering, City University
of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong
Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
- City
University of Hong Kong–Shenzhen Futian Research Institute, Shenzhen 518172, China
| | - Song Lin Chua
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State
Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Research
Centre of Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Research
Institute for Future Food (RiFood), The
Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|