1
|
Salami SA, Taylor-Pickard J, Ross SA, Moran CA. A Meta-Analysis of the Effects of Dietary Yeast Mannan-Rich Fraction on Broiler Performance and the Implication for Greenhouse Gas Emissions from Chicken Production. Animals (Basel) 2024; 14:1595. [PMID: 38891642 PMCID: PMC11171374 DOI: 10.3390/ani14111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dietary supplementation of yeast-derived mannan-rich fraction (MRF) could improve the gastrointestinal health and production efficiency of broilers, and, consequently, lower the environmental impacts of chicken production. The objective of this meta-analysis was to quantify the retrospective effects of feeding MRF (Actigen®, Alltech Inc., Nicholasville, KY) on the production performance of broilers. The meta-analysis database included 27 studies and consisted of 66 comparisons of MRF-supplemented diets vs. basal (i.e., negative control) and antibiotic-supplemented (i.e., positive control) diets. A total of 34,596 broilers were involved in the comparisons and the average final age of the birds was 35 days. Additionally, the impact of feeding MRF on the carbon footprint (feed and total emission intensities) of chicken production was evaluated using the meta-analysis results of broiler performance (MRF vs. basal diets) to develop a scenario simulation that was analyzed by a life cycle assessment (LCA) model. A database of all trials (MRF vs. basal and antibiotic diets) indicated that feeding MRF increased (p < 0.01) average daily feed intake (ADFI; +3.7%), final body weight (FBW; +3.5%), and average daily gain (ADG; 4.1%) and improved (p < 0.01) feed conversion ratio (FCR; -1.7%) without affecting (p > 0.05) mortality. A subdatabase of MRF vs. basal diets indicated that dietary MRF increased ADFI (+4.5%), FBW (+4.7%), and ADG (+6.3%) and improved FCR (-2.2%) and mortality (-21.1%). For the subdatabase of MRF vs. antibiotic diets, both treatments exhibited equivalent effects (p > 0.05) on broiler performance parameters, suggesting that MRF could be an effective alternative to in-feed antibiotics. Subgroup analysis revealed that different study factors (year of study, breed/strain, production challenges, and MRF feeding duration) influenced the effect of dietary MRF on broiler performance. Simulated life cycle analysis (LCA) indicated that feeding MRF decreased feed and total emission intensities, on average, by -2.4% and -2.1%, respectively. In conclusion, these results demonstrate that dietary MRF is an effective nutritional solution for improving broiler performance, an effective alternative to in-feed antibiotic growth promoters, and reduces the environmental impact of poultry meat production.
Collapse
Affiliation(s)
- Saheed A. Salami
- Alltech Biotechnology Centre, Summerhill Road, A86 X006 Dunboyne, Ireland;
| | - Jules Taylor-Pickard
- Solutions Deployment Team, Alltech (UK) Ltd., Ryhall Road, Stamford PE9 1TZ, UK;
| | | | - Colm A. Moran
- Regulatory Affairs Department, Alltech SARL, Rue Charles Amand, 14500 Vire, France
| |
Collapse
|
2
|
Rawling M, Schiavone M, Apper E, Merrifield DL, Castex M, Leclercq E, Foey A. Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish ( Danio rerio). Front Immunol 2023; 14:1158390. [PMID: 37304290 PMCID: PMC10248512 DOI: 10.3389/fimmu.2023.1158390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and β-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Daniel L. Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| |
Collapse
|
3
|
Impact of a Natural Fusarial Multi-Mycotoxin Challenge on Broiler Chickens and Mitigation Properties Provided by a Yeast Cell Wall Extract and a Postbiotic Yeast Cell Wall-Based Blend. Toxins (Basel) 2022; 14:toxins14050315. [PMID: 35622561 PMCID: PMC9145611 DOI: 10.3390/toxins14050315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Yeast cell wall-based preparations have shown efficacy against Aspergillus-based toxins but have lower impact against type-B trichothecenes. Presently, we investigated a combination of deoxynivalenol (DON), T-2 toxin (T2) and zearalenone (ZEA), and the effect of a yeast cell wall extract (YCWE) and a post-biotic yeast cell wall-based blend (PYCW) with the objectives of preventing mycotoxins’ negative effects in commercial broilers. A total of 720 one-day-old male Cobb broilers were randomly allocated to: (1) control diet, (aflatoxins 6 µg/kg; cyclopiazonic acid 15 µg/kg; fusaric acid 25 µg/kg; fumonisin B1 310 µg/kg); (2) Diet1 + 0.2% YCWE; (3) Diet1 + 0.2% PYCW; (4) Contaminated diet (3.0 mg/kg DON; 2.17 mg/kg 3-acetyldeoxynivalenol; 104 g/kg T2; 79 g/kg ZEA); (5) Diet4 + 0.2% YCWE; and (6) Diet4 + 0.2% PYCW. Naturally contaminated diets adversely affected performance, serum biochemistry, liver function, immune response, altered cecal SCFA goblet cell count and architecture of intestinal villi. These adverse effects were reduced in birds fed PYCW and to a lesser extent YCWE, indicating protection against toxic assault. PYCW yielded better production performance and stimulated liver function, with higher response to NDV and IBV vaccination. Furthermore, mycotoxins were found to affect production outputs when evaluated with the European poultry production efficiency factor compared to control or YCWE and PYCW supplemented treatments. Taken together, YCWE, when complemented with nutritional add-ons (PYCW), could potentiate the remediation of the negative effects from a multi mycotoxins dietary challenge in broiler birds.
Collapse
|
4
|
McCaffrey C, Corrigan A, Moynagh P, Murphy R. Effect of yeast cell wall supplementation on intestinal integrity, digestive enzyme activity and immune traits of broilers. Br Poult Sci 2021; 62:771-782. [PMID: 34009070 DOI: 10.1080/00071668.2021.1929070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The protective layer formed by intestinal epithelial cells acts as a barrier preventing the adhesion of pathogenic bacteria, aids digestion and passage of nutrients and reduces damage caused from toxins on the gastrointestinal tract. This study was conducted to investigate the effects of a yeast cell wall-based product (YCW), on broiler intestinal integrity, digestive enzyme capacity and immune function.2. A 35-d trial involving 246, one-d-of-hatch male broiler chickens was carried out at a trial facility at Agri-Food Biosciences Institute (AFBI, Belfast, UK). Birds were randomly allocated into 6 pens at day of hatch (41 birds/pen; 123 birds/group). Pens were divided into two groups: (1) basal diet and (2) basal diet that incorporated YCW at the manufacturers' recommended inclusion levels (Alltech Inc., Lexington, Kentucky, USA).3. In this study, YCW supplementation affected broiler intestinal morphology resulting in greater crypt depth, villus height and surface area, goblet cell density and mucus layer thickness and lower muscularis mucosae thickness. The digestive enzymes, maltase, sucrase and alkaline phosphatase, were significantly higher in the YCW supplemented group compared to the control. The expression levels of pro-inflammatory cytokines, IL-1β, IL-12 and IL-18, were significantly lower as was necroptotic cell death in YCW supplemented birds.4. In conclusion, under the conditions of this study, YCW supplementation positively affected intestinal health parameters in broilers following 35-d supplementation.
Collapse
Affiliation(s)
- C McCaffrey
- Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - A Corrigan
- Alltech Biotechnology Centre, Dunboyne, Ireland
| | - P Moynagh
- Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - R Murphy
- Alltech Biotechnology Centre, Dunboyne, Ireland
| |
Collapse
|
5
|
Weaver AC, King WD, Verax M, Fox U, Kudupoje MB, Mathis G, Lumpkins B, Yiannikouris A. Impact of Chronic Levels of Naturally Multi-Contaminated Feed with Fusarium Mycotoxins on Broiler Chickens and Evaluation of the Mitigation Properties of Different Titers of Yeast Cell Wall Extract. Toxins (Basel) 2020; 12:E636. [PMID: 33019707 PMCID: PMC7599674 DOI: 10.3390/toxins12100636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
The chronic intake of naturally multi-mycotoxin contaminated feed by broilers with or without titers of Yeast Cell Wall Extract (YCWE, a.k.a Mycosorb A+®), was investigated. Day-old male Cobb chicks (1600 birds, 64 pens, 25 birds/pen) were randomly allocated to diets of control (CON); diet containing mycotoxins (MT); CON + 0.2% YCWE; MT + 0.025% YCWE; MT + 0.05% YCWE; MT + 0.1% YCWE; MT + 0.2% YCWE; and MT + 0.4% YCWE. Growth performance, blood biochemical parameters and gut health were recorded over 42 days. Compared with CON, MT had reduced body weight (BW) and increased feed conversion ratio (FCR) on days 35 and 42 with increased duodenal crypt depth and fewer goblet cells. Furthermore, European Poultry Production Efficiency (EPEF) was reduced for MT versus CON. Feeding MT + 0.2% YCWE improved BW, lowered FCR, reduced crypt depth, increased goblet cell count and improved EPEF. Considering titration of YCWE (0 to 0.4%) during mycotoxin challenge, a cubic effect was observed for FCR with NC + 0.2% YCWE having the lowest FCR. These findings suggest that chronic consumption of multiple Fusarium mycotoxins present in common field concentrations can negatively impact broiler performance and gut health while inclusion of YCWE, particularly 0.2%, could be effective in counteracting mycotoxins.
Collapse
Affiliation(s)
- Alexandra C. Weaver
- Alltech, Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA; (A.C.W.); (W.D.K.); (M.V.); (U.F.); (M.B.K.)
| | - W. D. King
- Alltech, Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA; (A.C.W.); (W.D.K.); (M.V.); (U.F.); (M.B.K.)
| | - Morgan Verax
- Alltech, Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA; (A.C.W.); (W.D.K.); (M.V.); (U.F.); (M.B.K.)
| | - Ursula Fox
- Alltech, Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA; (A.C.W.); (W.D.K.); (M.V.); (U.F.); (M.B.K.)
| | - Manoj B. Kudupoje
- Alltech, Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA; (A.C.W.); (W.D.K.); (M.V.); (U.F.); (M.B.K.)
| | - Greg Mathis
- Southern Poultry Research, Inc., Athens, GA 30607, USA; (G.M.); (B.L.)
| | - Brett Lumpkins
- Southern Poultry Research, Inc., Athens, GA 30607, USA; (G.M.); (B.L.)
| | - Alexandros Yiannikouris
- Alltech, Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA; (A.C.W.); (W.D.K.); (M.V.); (U.F.); (M.B.K.)
| |
Collapse
|
6
|
Kasjanenko S, Kasjanenko O, Nagornaya L, Yevstafieva V, Melnychuk V, Lukyanova G, Gurenko I. Yeast-rich mannan fractions in duck cultivation: prospects of using. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-2-337-347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Due to the trend of avoiding antibiotics and acquiring eco-friendly products, the use of environmentally safe preparations is becoming increasingly relevant in poultry farming.
Study objects and methods. We used Salmonella enteritidis and Campylobacter jejuni isolated from poultry carcasses. At the first in vitro stage, we studied the ability of mannan oligosaccharides, isolated from the cell walls of Saccharomyces cerevisiae yeast, to adsorb bacterial pathogens. At the second stage, we studied the influence of fraction on the activity, colonization and microflora composition of ducklings’ intestines. At the third stage, we determined the antagonistic activity of Bifidobacterium spp. (Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum) and Lactobacillus spp. (Lactobacillus fermentun, Lactobacillus salivarius, Lactobacillus acidophilus) against Salmonella enteritidis and Campylobacter jejuni isolates. The experiment was conducted on the ducklings of Star 53 H.Y. cross. Their diet was supplemented with probiotics, prebiotics, and their combination.
Results and discussion. In vitro studies showed the ability of mannan oligosaccharides isolated from the cell walls of Saccharomyces cerevisiae yeast to adsorb Salmonella enteritidis and Campylobacter jejun. In vivo experiment showed the ability of mannan oligosaccharides to prevent colonization of poultry intestines by bacterial pathogens with type I fimbriae.
Conclusion. The reisolation rate of ducks infected with Salmonella enteritidis was 53.6% lower, and those infected with Campylobacter jejuni, 66.2% lower than the control. Mannan oligosaccharides added to the diet did not affect the concentration of lactobacilli, enterococci, and anaerobic bacteria in the ducks’ intestines. A combined use of Bifidobacterium spp. and mannan oligosaccharides improved the preservation of poultry stock by 8.7%, which made it an effective way to prevent poultry salmonellosis.
Collapse
|
7
|
BILAL RM, HASSAN F, SAEED M, AYASAN TUGAY, RASHED N, AKHTAR MU, SEIDAVI ALIREZA. Prospects of yeast based feed additives in poultry nutrition: Potential effects and applications. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i4.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Yeast and its derivatives are extensively utilized as feed additives in poultry industry owing to their desirable health and growth promoting effects. Exhaustive number of studies had reported positive effects of yeast based additives on growth, meat quality, immunity, antioxidant status, and gastrointestinal functions in poultry birds. Owing to their prebiotic/probiotic properties, they also play significant role in gut development and modulation of gut microbiome by favouring beneficial microbes while reducing colonization of pathogenic microbes by competitive exclusion. They also possess effective potential for binding of dietary toxins in addition to improving digestion and utilization of nutrients. Moreover, yeast based additives have exhibited desirable effects on humoral immunity by increasing serum immunoglobulin (Ig) A levels. These additives have been also used as immune adjuvants to boost innate immune response under any pathogenic challenges in birds. Due to their diverse biological activities, yeast products are potentially capable for immune hemostasis by mediating balance between pro- and anti-inflammatory activities. These unique properties of yeast based products make them promising feed additive to promote health and productivity leading to efficient poultry production. Yeast can be supplemented in poultry diets @ 5.0–10.0 g/kg of feed. Numerous studies had reported significant improvement in body weight gain (3 to 8%) and FCR (1.6 to 12%) in broilers in response to supplementation of yeast based additives. Moreover, yeast supplementation also improved hemoglobin (Hb g/dl) levels up to 2.59 to 6.62%, total protein (>0.69%) while reducing serum cholesterol (mg/dl) up to 3.68 to 13.38%. Despite the potential properties and beneficial effects, use of yeast and its derivatives as feed additives in poultry industry is not matching its inherent potential due to many reasons. This review aims to highlight the importance and potential role of yeast and its products as natural growth promoter to replace in feed antibiotics to address the issues of antibiotic residues and microbial resistance. This article provides insights on functional role of yeast based additives in poultry diets and their importance as commercially viable alternatives of antibiotic growth promoters in poultry feed industry.
Collapse
|
8
|
seifi S, Partovi R, Khoshbakht R, Gilani A. The Effect of Prebiotic Administration in the Diet at Unusual Times on Fecal Shedding of Salmonella enteritidis and Meat Characteristics of Broilers. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2019. [DOI: 10.15171/ijep.2019.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: One of the most important foodborne pathogen which causes enteritis is Salmonella enteritidis (SE). Human cases are mostly associated with the consumption of eggs and poultry meat. Objective: An experiment has been carried out to evaluate the impacts of a yeast product as liquid prebiotic on bacterial shedding, performance indices, and some breast meat characteristics of broiler chickens challenged with SE. Materials and Methods: A total of 90 one-day-old male broiler chicks (Ross 308) were randomly assigned to three different groups with three replicates for each treatment. The treatments were as follows: (1) CONT: birds were not challenged, (2) SE: birds were challenged with SE and fed with a control diet without prebiotic, and (3) SE+PREB: birds were challenged with SE and fed with liquid prebiotic. The challenge with SE was performed on birds in groups 2 and 3 at 28 days of age. Performance parameters and Salmonella shedding were determined on days 7 and 14 post infection. Twelve birds per treatment were sampled at the end of the trial for evaluating characteristics of breast meat. Results: The challenged birds which received prebiotic showed significantly higher body weight gain, lower feed intake, and lower SE shedding than SE group (P<0.05). No significant differences were seen in meat characteristics. Conclusion: Prebiotics can have beneficial effects even if they are used in the diet at an unusual time. The supplementation of yeast product can improve some performance parameters and reduce bacterial shedding in SE challenged chicken.
Collapse
Affiliation(s)
- saeed seifi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Rahem Khoshbakht
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Ali Gilani
- Ph.D. in Poultry Nutrition, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
9
|
Al-Khalaifah HS. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult Sci 2018; 97:3807-3815. [PMID: 30165527 DOI: 10.3382/ps/pey160] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 11/20/2022] Open
Abstract
Antibiotics have been used for many years as growth promoters. They contribute to build the immunocompetence (i.e. ability of the body to produce a normal immune response following exposure to an antigen) of birds against infectious diseases and as growth promoters. Antibiotics have been widely used as growth promoters in the field of animal production since 1940s. There is a hypothesis that is effect is brought about by dynamic biological interaction with the micro-flora in the intestine. In 1951, the United States Food and Drug Administration approved the use of antibiotics as animal additives to prevent disease in general and, in some cases, to improve efficiency without veterinary prescription. In the 1950s and 1960s, each European state approved its own national regulations about the use of antibiotics in animal feeds. However, using antibiotics may develop bacteria resistant to these drugs. Accordingly, the use of antibiotics has been minimized and replaced by effective dietary supplements such as probiotics and/or prebiotics that are claimed to enhance growth and positively modulate the immune response. The current review paper sheds light on the benefits of using probiotics and/or prebiotics in poultry feed versus the risk of using antibiotics and the mechanisms by which they exert their effects, as well as the economic analysis of using these beneficial additives in poultry feed.
Collapse
Affiliation(s)
- H S Al-Khalaifah
- Environment and Life sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat- KUWAIT
| |
Collapse
|
10
|
Corrigan A, Fay B, Corcionivoschi N, Murphy R. Effect of yeast mannan-rich fractions on reducing Campylobacter colonization in broiler chickens. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation. Appl Environ Microbiol 2015; 81:3460-70. [PMID: 25769823 DOI: 10.1128/aem.04194-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
This study focused on identifying reproducible effects of dietary supplementation with a mannan oligosaccharide (MOS) on the broiler cecal bacterial community structure and function in a commercial production setting. Two separate trials, each with a control and a supplemented group, were carried out in the same commercial location and run concurrently. Approximately 10,000 birds from the same commercial hatchery were mirror imaged into each of four commercial broiler sheds and fed either a control or supplemented diet. Cecal contents were obtained on days 7, 21, and 35 posthatch from 12 randomly caught broilers from each group. Bacterial pyrosequencing was performed on all samples, with approximately 250,000 sequences obtained per treatment per time point. The predominant phyla identified at all three time points in both trials were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Tenericutes, representing >99% of all sequences. MOS supplementation altered the bacterial community composition from 7 days supplementation through 35 days supplementation. Bacteroidetes appeared to be replacing Firmicutes as a result of supplementation, with the most noticeable effects after 35 days. The effects of supplementation were reproducible across both trials. PICRUSt was used to identify differences between the functional potentials of the bacterial communities as a result of MOS supplementation. Using level 3 KEGG ortholog function predictions, differences between control and supplemented groups were observed, with very strong segregation noted on day 35 posthatch in both trials. This indicated that alterations of bacterial communities as a result of MOS are likely to alter the functional capability of the cecum.
Collapse
|
12
|
Comparison of performance and intestinal morphology of broilers using step-down supplementation with a mannan-rich fraction versus bacitracin methylene disalicylate. JOURNAL OF APPLIED ANIMAL NUTRITION 2014. [DOI: 10.1017/jan.2014.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryTwo experiments were conducted to compare effects of utilising step-down dosing of a mannan-rich fraction (MRF) of yeast cell wall or the antimicrobial growth promoter (AGP) bacitracin methylene disalicylate (BMD) when chicks were raised on built-up litter. Chicks were randomly assigned to one of three treatment groups (12 pen replicates; 50 birds per pen): basal diet (control) or basal diet plus MRF (Actigen™; Alltech Inc., Nicholasville, KY) or BMD (Alpharma Inc., Fort Lee, NJ). In experiment two, intestinal morphology and litter scores were determined on d 42. In experiment one, MRF and BMD increased BW gain at d 21 and d 42 compared with control (P ≤ 0.05) and d 42 BW was greater in BMD birds than controls (P ≤ 0.05). Adjusted FCRs were lower in MRF and BMD birds from d 0 to d 42 (P = 0.06). In experiment two, there was no effect of treatment on d 21 BW, but MRF and BMD improved adjusted FCR (P = 0.02) compared with control. By d 35, both MRF and BMD birds had greater BWs than controls (P = 0.04). At d 42, MRF-supplemented birds had greater BW than controls (P ≤ 0.05). D 35 and d 42 FCR improved with MRF or BMD compared with control (P ≤ 0.01). Litter conditions improved (P ≤ 0.05) when birds were fed diets with BMD and MRF compared with control-fed birds. Jejunal morphology, including villi height (P ≤ 0.05), villi height: crypt depth ratio (P ≤ 0.05), and goblet cell numbers (P ≤ 0.05) improved with MRF and BMD compared with control. Both MRF and BMD improved broiler performance, potentially related to the improvements observed in intestinal morphology. In conclusion, step-down supplementation with MRF may offer a potential alternative to AGP to improve performance in broilers raised in commercial settings.
Collapse
|