1
|
Firth J, Standen B, Sumich A, Fino E, Heym N. The neural correlates of reinforcement sensitivity theory: A systematic review of the frontal asymmetry and spectral power literature. Psychophysiology 2024; 61:e14594. [PMID: 38693649 DOI: 10.1111/psyp.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/10/2023] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
The original Reinforcement Sensitivity Theory (oRST) proposes two systems of approach (BAS) and avoidance (BIS) motivation to underpin personality and behavior. The revised-RST (rRST) model separates avoidance motivation into passive (BIS; anxiety) and active (FFFS; fear) systems. Prior research has attempted to map RST onto lateralized frontal asymmetry to provide a neurophysiological marker of RST. The main aim is to examine the relationships of the o/rRST scales with trait (baseline) and state (manipulated through experimental paradigms) frontal asymmetry. A systematic review was conducted, resulting in 158 studies designated to neuroimaging research. In total, 54 studies were included in this review using either frontal asymmetry or spectral power. The results were split into three main categories: resting frontal alpha asymmetry (N = 23), emotional induction and state-related frontal alpha asymmetry (N = 20), and spectral analysis (N = 16). Findings indicated that BAS was associated with enhanced left frontal asymmetry at baseline and during state-related paradigms. Findings for BIS were more inconsistent, especially at rest, suggesting that BIS, in particular, may require active engagement with the environment. Only 9 of the 54 papers included used the revised RST model, highlighting the need for more rRST research.
Collapse
Affiliation(s)
- Jennifer Firth
- Division of Psychology, Nottingham Trent University, Nottingham, UK
| | - Bradley Standen
- Division of Psychology, Nottingham Trent University, Nottingham, UK
| | - Alexander Sumich
- Division of Psychology, Nottingham Trent University, Nottingham, UK
| | - Emanuele Fino
- Division of Psychology, Nottingham Trent University, Nottingham, UK
| | - Nadja Heym
- Division of Psychology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
2
|
Sözer ÖT, Dereboy Ç, İzgialp İ. How is variability in physiological responses to social stress related to punishment and reward sensitivities? Preliminary findings from the revised reinforcement sensitivity theory of personality perspective. ANXIETY, STRESS, AND COPING 2024; 37:667-684. [PMID: 38053395 DOI: 10.1080/10615806.2023.2290667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE Although personality traits are assumed to have biological/physiological foundations, research has yielded mixed evidence regarding the relationship between personality and physiological stress responses. Moreover, the field has often overlooked the contemporary neuroscience-based personality approach, known as the Reinforcement Sensitivity Theory (RST) of Personality, in stress research. METHOD The present study examined the relationship between the revised RST's personality dimensions and heart rate and skin conductance level (SCL) in response to the Trier Social Stress Test in a sample of 61 healthy university students. RESULTS Piecewise latent growth curve analysis controlling for the participants' current life stress, smoking use, and caffeine intake revealed that individuals with higher behavioral inhibition exhibited higher physiological reactivity, whereas those with high reward sensitivity showed smaller heart rate reactivity. The behavioral disengagement facet of the behavioral inhibition scale was associated with reduced sympathetic arousal during the stress task. Additionally, reward interest was associated with a larger recovery of SCL. CONCLUSION Results were generally in line with the revised theory. The study findings were discussed within the paradigm of the approach-avoidance conflict and highlighted the importance of reward sensitivity in stress resilience.
Collapse
Affiliation(s)
- Ömer Taha Sözer
- Department of Psychology, Yüzüncü Yıl University, Van, Türkiye
| | - Çiğdem Dereboy
- Department of Mental Health and Diseases, Aydın Adnan Menderes University, Aydın, Türkiye
| | - İpek İzgialp
- Doctoral Candidate, Department of Psychology, Aydın Adnan Menderes University, Aydın, Türkiye
| |
Collapse
|
3
|
Barbosa SP, Junqueira YN, Akamatsu MA, Marques LM, Teixeira A, Lobo M, Mahmoud MH, Omer WE, Pacheco-Barrios K, Fregni F. Resting-state electroencephalography delta and theta bands as compensatory oscillations in chronic neuropathic pain: a secondary data analysis. BRAIN NETWORK AND MODULATION 2024; 3:52-60. [PMID: 39119588 PMCID: PMC11309019 DOI: 10.4103/bnm.bnm_17_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Chronic neuropathic pain (CNP) remains a significant clinical challenge, with complex neurophysiological underpinnings that are not fully understood. Identifying specific neural oscillatory patterns related to pain perception and interference can enhance our understanding and management of CNP. To analyze resting electroencephalography data from individuals with chronic neuropathic pain to explore the possible neural signatures associated with pain intensity, pain interference, and specific neuropathic pain characteristics. We conducted a secondary analysis from a cross-sectional study using electroencephalography data from a previous study, and Brief Pain Inventory from 36 patients with chronic neuropathic pain. For statistical analysis, we modeled a linear or logistic regression by dependent variable for each model. As independent variables, we used electroencephalography data with such brain oscillations: as delta, theta, alpha, and beta, as well as the oscillations low alpha, high alpha, low beta, and high beta, for the central, frontal, and parietal regions. All models tested for confounding factors such as age and medication. There were no significant models for Pain interference in general activity, walking, work, relationships, sleep, and enjoyment of life. However, the model for pain intensity during the past four weeks showed decreased alpha oscillations, and increased delta and theta oscillations were associated with decreased levels of pain, especially in the central area. In terms of pain interference in mood, the model showed high oscillatory Alpha signals in the frontal and central regions correlated with mood impairment due to pain. Our models confirm recent findings proposing that lower oscillatory frequencies, likely related to subcortical pain sources, may be associated with brain compensatory mechanisms and thus may be associated with decreased pain levels. On the other hand, higher frequencies, including alpha oscillations, may disrupt top-down compensatory mechanisms.
Collapse
Affiliation(s)
- Sara Pinto Barbosa
- Instituto de Medicina Física e
Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ygor Nascimento Junqueira
- Principles and Practice of Clinical Research Program,
Harvard T.H. Chan School of Public Health, Boston
| | | | - Lucas Murrins Marques
- Mental Health Department, Santa Casa de São Paulo
School of Medical Sciences, São Paulo, SP, Brazil
| | - Adriano Teixeira
- Federal University of Bahia, Multidisciplinary Health
Institute – IMS, Salvador, BA, Brazil
| | - Matheus Lobo
- Surgical Oncologist at Hospital A. C. Camargo, São
Paulo, SP, Brazil
| | | | | | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research
Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital,
Harvard Medical School, Boston, MD, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de
Investigación, Unidad de Investigación para la Generación y
Síntesis de Evidencias en Salud, Lima, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research
Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital,
Harvard Medical School, Boston, MD, USA
| |
Collapse
|
4
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
5
|
Candia-Rivera D, Catrambone V, Barbieri R, Valenza G. A new framework for modeling the bidirectional interplay between brain oscillations and cardiac sympathovagal activity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1957-1960. [PMID: 36083927 DOI: 10.1109/embc48229.2022.9871169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of functional brain-heart interplay (BHI) aims to describe the dynamical interactions between central and peripheral autonomic nervous systems. Here, we introduce the Sympathovagal Synthetic Data Generation Model, which constitutes a new computational framework for the assessment of functional BHI. The model estimates the bidirectional interplay with novel quantifiers of cardiac sympathovagal activity gathered from Laguerre expansions of RR series (from the ECG), as an alternative to the classical spectral analysis. The main features of the model are time-varying coupling coefficients linking Electroencephalography (EEG) oscillations and cardiac sympathetic or parasympathetic activity, for either ascending or descending direction of the information flow. In this proof-of-concept study, functional BHI is quantified in the direction from-heart-to-brain, on data from 16 human volunteers undergoing a cold-pressor test. Results show that thermal stress induces heart-to-brain functional interplay originating from sympathetic and parasympathetic activities and sustaining EEG oscillations mainly in the δ and γ bands. The proposed computational framework could provide a viable tool for the functional assessment of the causal interplay between cortical and cardiac sympathovagal dynamics.
Collapse
|
6
|
Huang Y, Jiao J, Hu J, Hsing C, Lai Z, Yang Y, Li Z, Hu X. Electroencephalographic Measurement on Post-stroke Sensory Deficiency in Response to Non-painful Cold Stimulation. Front Aging Neurosci 2022; 14:866272. [PMID: 35645770 PMCID: PMC9131028 DOI: 10.3389/fnagi.2022.866272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Reduced elementary somatosensation is common after stroke. However, the measurement of elementary sensation is frequently overlooked in traditional clinical assessments, and has not been evaluated objectively at the cortical level. This study designed a new configuration for the measurement of post-stroke elementary thermal sensation by non-painful cold stimulation (NPCS). The post-stroke cortical responses were then investigated during elementary NPCS on sensory deficiency via electroencephalography (EEG) when compared with unimpaired persons. Method Twelve individuals with chronic stroke and fifteen unimpaired controls were recruited. A 64-channel EEG system was used to investigate the post-stroke cortical responses objectively during the NPCS. A subjective questionnaire of cold sensory intensity was also administered via a numeric visual analog scale (VAS). Three water samples with different temperatures (i.e., 25, 10, and 0°C) were applied to the skin surface of the ventral forearm for 3 s via glass beaker, with a randomized sequence on either the left or right forearm of a participant. EEG relative spectral power (RSP) and topography were used to evaluate the neural responses toward NPCS with respect to the independent factors of stimulation side and temperature. Results For unimpaired controls, NPCS initiated significant RSP variations, mainly located in the theta band with the highest discriminative resolution on the different temperatures (P < 0.001). For stroke participants, the distribution of significant RSP spread across all EEG frequency bands and the temperature discrimination was lower than that observed in unimpaired participants (P < 0.05). EEG topography showed that the NPCS could activate extensive and bilateral sensory cortical areas after stroke. Significant group differences on RSP intensities were obtained in each EEG band (P < 0.05). Meanwhile, significant asymmetry cortical responses in RSP toward different upper limbs were observed during the NPCS in both unimpaired controls and participants with stroke (P < 0.05). No difference was found between the groups in the VAS ratings of the different temperatures (P > 0.05). Conclusion The post-stroke cortical responses during NPCS on sensory deficiency were characterized by the wide distribution of representative RSP bands, lowered resolution toward different temperatures, and extensive activated sensory cortical areas.
Collapse
Affiliation(s)
- Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Jiao Jiao
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Junyan Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chihchia Hsing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhangqi Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Yang Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Centre for Rehabilitation Technical Aids Beijing, Beijing, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Candia-Rivera D, Catrambone V, Barbieri R, Valenza G. Functional assessment of bidirectional cortical and peripheral neural control on heartbeat dynamics: a brain-heart study on thermal stress. Neuroimage 2022; 251:119023. [PMID: 35217203 DOI: 10.1016/j.neuroimage.2022.119023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
The study of functional brain-heart interplay (BHI) from non-invasive recordings has gained much interest in recent years. Previous endeavors aimed at understanding how the two dynamical systems exchange information, providing novel holistic biomarkers and important insights on essential cognitive aspects and neural system functioning. However, the interplay between cardiac sympathovagal and cortical oscillations still has much room for further investigation. In this study, we introduce a new computational framework for a functional BHI assessment, namely the Sympatho-Vagal Synthetic Data Generation Model, combining cortical (electroencephalography, EEG) and peripheral (cardiac sympathovagal) neural dynamics. The causal, bidirectional neural control on heartbeat dynamics was quantified on data gathered from 26 human volunteers undergoing a cold-pressor test. Results show that thermal stress induces heart-to-brain functional interplay sustained by EEG oscillations in the delta and gamma bands, primarily originating from sympathetic activity, whereas brain-to-heart interplay originates over central brain regions through sympathovagal control. The proposed methodology provides a viable computational tool for the functional assessment of the causal interplay between cortical and cardiac neural control.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy.
| | - Vincenzo Catrambone
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics, and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - Gaetano Valenza
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy
| |
Collapse
|
8
|
Völker JM, Arguissain FG, Manresa JB, Andersen OK. Characterization of Source-Localized EEG Activity During Sustained Deep-Tissue Pain. Brain Topogr 2021; 34:192-206. [PMID: 33403561 DOI: 10.1007/s10548-020-00815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Musculoskeletal pain is a clinical condition that is characterized by ongoing pain and discomfort in the deep tissues such as muscle, bones, ligaments, nerves, and tendons. In the last decades, it was subject to extensive research due to its high prevalence. Still, a quantitative description of the electrical brain activity during musculoskeletal pain is lacking. This study aimed to characterize intracranial current source density (CSD) estimations during sustained deep-tissue experimental pain. Twenty-three healthy volunteers received three types of tonic stimuli for three minutes each: computer-controlled cuff pressure (1) below pain threshold (sustained deep-tissue no-pain, SDTnP), (2) above pain threshold (sustained deep-tissue pain, SDTP) and (3) vibrotactile stimulation (VT). The CSD in response to these stimuli was calculated in seven regions of interest (ROIs) likely involved in pain processing: contralateral anterior cingulate cortex, contralateral primary somatosensory cortex, bilateral anterior insula, contralateral dorsolateral prefrontal cortex, posterior parietal cortex and contralateral premotor cortex. Results showed that participants exhibited an overall increase in spectral power during SDTP in all seven ROIs compared to both SDTnP and VT, likely reflecting the differences in the salience of these stimuli. Moreover, we observed a difference is CSD due to the type of stimulus, likely reflecting somatosensory discrimination of stimulus intensity. These results describe the different contributions of neural oscillations within these brain regions in the processing of sustained deep-tissue pain.
Collapse
Affiliation(s)
- Juan Manuel Völker
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark.
| | - Federico Gabriel Arguissain
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark.,Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina
| | - Ole Kæseler Andersen
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Petrini L, Arendt-Nielsen L. Understanding Pain Catastrophizing: Putting Pieces Together. Front Psychol 2020; 11:603420. [PMID: 33391121 PMCID: PMC7772183 DOI: 10.3389/fpsyg.2020.603420] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
The present narrative review addresses issues concerning the defining criteria and conceptual underpinnings of pain catastrophizing. To date, the concept of pain catastrophizing has been extensively used in many clinical and experimental contexts and it is considered as one of the most important psychological correlate of pain chronicity and disability. Although its extensive use, we are still facing important problems related to its defining criteria and conceptual understanding. At present, there is no general theoretical agreement of what catastrophizing really is. The lack of a consensus on its definition and conceptual issues has important consequences on the choice of the pain management approaches, defining and identifying problems, and promoting novel research. Clinical and research work in absence of a common theoretical ground is often trivial. It is very surprising that clinical and experimental work has grown extensively in the past years, without a common ground in the form of a clear definition of pain catastrophizing and overview of its conceptual basis. Improving the efficacy and efficiency of pan catastrophizing related treatments requires an understanding of the theoretical construct. So far, most interventions have only demonstrated modest effects in reducing pain catastrophizing. Therefore, clarifying the construct may be an important precursor for developing more targeted and effective interventions, thereby easing some of the burden related to this aspect of pain. In our review, we have extracted and de-constructed common elements that emerge from different theoretical models with the aim to understand the concept of catastrophizing, which components can be modulated by psychological interventions, and the general role in pain processing. The analysis of the literature has indicated essential key elements to explain pain catastrophizing: emotional regulation, catastrophic worry (as repetitive negative thinking), rumination, behavioral inhibition and behavioral activation (BIS/BAS) systems, and interoceptive sensitivity. The present paper attempts to integrate these key elements with the aim to re-compose and unify the concept within a modern biopsychosocial interpretation of catastrophizing.
Collapse
Affiliation(s)
- Laura Petrini
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Abstract
Neural oscillations play an important role in the integration and segregation of brain regions that are important for brain functions, including pain. Disturbances in oscillatory activity are associated with several disease states, including chronic pain. Studies of neural oscillations related to pain have identified several functional bands, especially alpha, beta, and gamma bands, implicated in nociceptive processing. In this review, we introduce several properties of neural oscillations that are important to understand the role of brain oscillations in nociceptive processing. We also discuss the role of neural oscillations in the maintenance of efficient communication in the brain. Finally, we discuss the role of neural oscillations in healthy and chronic pain nociceptive processing. These data and concepts illustrate the key role of regional and interregional neural oscillations in nociceptive processing underlying acute and chronic pains.
Collapse
Affiliation(s)
- Junseok A. Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|