1
|
Martins-Costa MTC, Ruiz-López MF. The Effect of Electric Fields on Oxidization Processes at the Air-Water Interface. Angew Chem Int Ed Engl 2025; 64:e202418593. [PMID: 39601791 DOI: 10.1002/anie.202418593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
At the air-water interface, many reactions are accelerated, sometimes by several orders of magnitude. This phenomenon has proved to be particularly important in water microdroplets, where the spontaneous oxidation of many species stable in bulk has been experimentally demonstrated. Different theories have been proposed to explain this finding, but it is currently believed that the role of interfacial electric fields is key. In this work, we have carried out a quantum chemistry study aimed at shedding some light on this question. We have studied two prototypical processes in which a hydroxide anion transfers its excess electron to either the water environment or a dioxygen molecule. To model the interface, we use a cluster of 21 water molecules immersed in an electric field, and we examine the energetics of the studied reactions as a function of field magnitude. Our results reveal that electric fields close to those estimated for the neat air-water interface (∼0.15 V ⋅ Å-1) have a moderate effect on the reaction energetics and that much stronger fields (>1 V ⋅ Å-1) are required to get spontaneous electron transfer. Therefore, the study suggests that additional factors such as an excess charge in microdroplets need to be considered for explaining the experimental observations.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
Eatoo MA, Wehbe N, Kharbatia N, Guo X, Mishra H. Why do some metal ions spontaneously form nanoparticles in water microdroplets? Disentangling the contributions of the air-water interface and bulk redox chemistry. Chem Sci 2025; 16:1115-1125. [PMID: 39620073 PMCID: PMC11603139 DOI: 10.1039/d4sc03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Water microdroplets containing 100 μM HAuCl4 have been shown to reduce gold ions into gold nanoparticles spontaneously. It has been suggested that this chemical transformation takes place exclusively at the air-water interface of microdroplets, albeit without mechanistic insights. We compared the fate of several metallic salts in water, methanol, ethanol, and acetonitrile in the bulk phase and microdroplet geometry (sprays). Experiments revealed that when HAuCl4 (or PtCl4) is added to bulk water (or methanol or ethanol), metal NPs appear spontaneously. Over time, the nanoparticles grow, evidenced by the bulk solutions' changing colors. If the bulk solution is sprayed pneumatically and microdroplets are collected, the NP size distribution is not significantly enhanced. We find that the reduction of metal ions is accompanied by the oxidation of water (or alcohols); however, these redox reactions are minimal in acetonitrile. This establishes that the spontaneous reduction of metal ions is (i) a bulk phase phenomenon in water and several non-aqueous solutions, (ii) minimally affected by the air-water interface or the microdroplet geometry, and (iii) is not limited to Au3+ ions and can be explained via the electrochemical series. These results advance our understanding of aquatic chemistry and liquids in general and should be relevant in soil chemistry, biogeochemistry, electrochemistry, and green chemistry.
Collapse
Affiliation(s)
- Muzzamil Ahmad Eatoo
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Nimer Wehbe
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Najeh Kharbatia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Xianrong Guo
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Himanshu Mishra
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
3
|
Rana A, Clarke TB, Nguyen JH, Dick JE. Adsorbed microdroplets are mobile at the nanoscale. Proc Natl Acad Sci U S A 2024; 121:e2412148121. [PMID: 39531504 PMCID: PMC11588086 DOI: 10.1073/pnas.2412148121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
The extraordinary chemistry of microdroplets has reshaped how we as a community think about reactivity near multiphase boundaries. Even though interesting physico-chemical properties of microdroplets have been reported, "sessile" droplets' inherent mobility, which has been implicated as a driving force for curious chemistry, has not been well established. This paper seeks to answer the question: Can adsorbed microdroplets be mobile at the nanoscale? This is a tantalizing question, as almost no measurement technique has the spatiotemporal resolution to answer it. Here, we demonstrate a highly sensitive technique to detect nanometric motions of insulating bodies adsorbed to electrified microinterfaces. We place an organic droplet atop a microelectrode and track its dissolution by driving a heterogeneous reaction in the aqueous continuous phase. As the droplet's contact radius approaches the size of the microelectrode, the current versus time curve remarkably displays abrupt changes in current. We used finite element modeling to demonstrate these abrupt steps are due to nanometric movements of the three-phase boundary, where the nonaqueous droplet meets the aqueous phase and the electrode. Furthermore, the velocity with which the liquid interface moves can be estimated to tens-to-hundreds of nanometers per second. Our results indicate that processes that are driven by contact electrification and the frictional movement of bodies on a surface may be at play even when a droplet seems quiescent.
Collapse
Affiliation(s)
- Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Thomas B. Clarke
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - James H. Nguyen
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Jeffrey E. Dick
- Department of Chemistry, Purdue University, West Lafayette, IN47907
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN47907
| |
Collapse
|
4
|
Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface 2024; 21:18. [PMID: 38920060 DOI: 10.1098/rsif.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.
Collapse
Affiliation(s)
- Alexandra K Longest
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University , Durham, NC, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University , Atlanta, GA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
5
|
Kumar A, Kumar P. Dissociation of H 2O 2 on water surfaces (ice and water droplets). Phys Chem Chem Phys 2024; 26:11331-11339. [PMID: 38563356 DOI: 10.1039/d3cp04107g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OH radicals are an important constituent of the atmosphere. Therefore, all reactions that act as a source of OH radicals are important. It is known that photo-dissociation of H2O2 is an important source of OH radicals in the atmosphere. In the present study, using Born-Oppenheimer molecular dynamics simulations, we have shown that the H2O2 molecule can dissociate thermally on water droplets, as well as on the surface of ice, to form OH radicals. Furthermore, the dissociation of H2O2 was found to be very fast (less than 50 fs) on the ice surface compared with on the water droplets. We believe this route for the formation of OH radicals could be more critical than photo-dissociation, as it can take place both during the day and at night, but further studies with more sophisticated theoretical approaches or experiments are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
6
|
Mofidfar M, Mehrgardi MA, Xia Y, Zare RN. Dependence on relative humidity in the formation of reactive oxygen species in water droplets. Proc Natl Acad Sci U S A 2024; 121:e2315940121. [PMID: 38489384 PMCID: PMC10962988 DOI: 10.1073/pnas.2315940121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Water microdroplets (7 to 11 µm average diameter, depending on flow rate) are sprayed in a closed chamber at ambient temperature, whose relative humidity (RH) is controlled. The resulting concentration of ROS (reactive oxygen species) formed in the microdroplets, measured by the amount of hydrogen peroxide (H2O2), is determined by nuclear magnetic resonance (NMR) and by spectrofluorimetric assays after the droplets are collected. The results are found to agree closely with one another. In addition, hydrated hydroxyl radical cations (•OH-H3O+) are recorded from the droplets using mass spectrometry and superoxide radical anions (•O2-) and hydroxyl radicals (•OH) by electron paramagnetic resonance spectroscopy. As the RH varies from 15 to 95%, the concentration of H2O2 shows a marked rise by a factor of about 3.5 in going from 15 to 50%, then levels off. By replacing the H2O of the sprayed water with deuterium oxide (D2O) but keeping the gas surrounding droplets with H2O, mass spectrometric analysis of the hydrated hydroxyl radical cations demonstrates that the water in the air plays a dominant role in producing H2O2 and other ROS, which accounts for the variation with RH. As RH increases, the droplet evaporation rate decreases. These two facts help us understand why viruses in droplets both survive better at low RH values, as found in indoor air in the wintertime, and are disinfected more effectively at higher RH values, as found in indoor air in the summertime, thus explaining the recognized seasonality of airborne viral infections.
Collapse
Affiliation(s)
| | - Masoud A. Mehrgardi
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemistry, University of Isfahan, Isfahan81743, Iran
| | - Yu Xia
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| |
Collapse
|
7
|
Eatoo MA, Mishra H. Busting the myth of spontaneous formation of H 2O 2 at the air-water interface: contributions of the liquid-solid interface and dissolved oxygen exposed. Chem Sci 2024; 15:3093-3103. [PMID: 38425539 PMCID: PMC10901496 DOI: 10.1039/d3sc06534k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Recent reports on the spontaneous formation of hydrogen peroxide (H2O2) at the air-water and solid-water interfaces challenge our current understanding of aquatic chemistry and have ramifications on atmosphere chemistry models, surface science, and green chemistry. Suggested mechanisms underlying this chemical transformation include ultrahigh instantaneous electric fields at the air-water interface and the oxidation of water and reduction of the solid at the solid-water interface. Here, we revisit this curious problem with NMR spectroscopy (with an H2O2 detection limit ≥50 nM) and pay special attention to the effects of nebulizing gas, dissolved oxygen content, and the solid-water interface on this chemical transformation in condensed and sprayed water microdroplets. Experiments reveal that the reduction of dissolved oxygen at the solid-water interface predominantly contributes to the H2O2 formation (not the oxidation of hydroxyl ions at the air-water interface or the oxidation of water at the solid-water interface). We find that the H2O2 formation is accompanied by the consumption (i.e., reduction) of dissolved oxygen and the oxidation of the solid surface, i.e., in the absence of dissolved oxygen, the formation of H2O2(aq) is not observed within the detection limit of ≥50 nM. Remarkably, the tendency of the solids investigated in this work towards forming H2O2 in water followed the same order as their positions in the classic Galvanic series. These findings bust the prevailing myths surrounding H2O2 formation due to the air-water interface, the ultrahigh electric fields therein, or the micro-scale of droplets. The hitherto unrealized role of the oxidation of the solid surface due to dissolved oxygen in the formation of H2O2 is exposed. These findings are especially relevant to corrosion science, surface science, and electrochemistry, among others.
Collapse
Affiliation(s)
- Muzzamil Ahmad Eatoo
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Himanshu Mishra
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Benjamin SE, LaVerne JA, Sigmon GE, Burns PC. Ozone-Facilitated Formation of Uranyl Peroxide in Humid Conditions. Inorg Chem 2022; 61:20977-20985. [PMID: 36519839 DOI: 10.1021/acs.inorgchem.2c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metaschoepite, [(UO2)8O2(OH)12](H2O)10, maintained in a high relative humidity (RH) environment with air initially transformed into an intermediate phase that subsequently was replaced by the peroxide phase studtite, [(UO2)(O2)(H2O)2](H2O)2, over the course of 42 days, as observed using Raman and infrared spectroscopy and powder X-ray diffraction. Addition of atmospheric ozone vastly increased the rate and extent of the transformation to studtite but only in a high-RH atmosphere. Owing to its strong affinity for peroxide, uranyl reacted with hydrogen peroxide as it formed and precipitated stable studtite. In this work, we provide a previously unidentified source of hydrogen peroxide and make a case for the re-examination of storage systems where the consequences of atmospheric ozone are not considered.
Collapse
Affiliation(s)
- Savannah E Benjamin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
9
|
Chen B, Xia Y, He R, Sang H, Zhang W, Li J, Chen L, Wang P, Guo S, Yin Y, Hu L, Song M, Liang Y, Wang Y, Jiang G, Zare RN. Water-solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. Proc Natl Acad Sci U S A 2022; 119:e2209056119. [PMID: 35914139 PMCID: PMC9371641 DOI: 10.1073/pnas.2209056119] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Contact electrification between water and a solid surface is crucial for physicochemical processes at water-solid interfaces. However, the nature of the involved processes remains poorly understood, especially in the initial stage of the interface formation. Here we report that H2O2 is spontaneously produced from the hydroxyl groups on the solid surface when contact occurred. The density of hydroxyl groups affects the H2O2 yield. The participation of hydroxyl groups in H2O2 generation is confirmed by mass spectrometric detection of 18O in the product of the reaction between 4-carboxyphenylboronic acid and 18O-labeled H2O2 resulting from 18O2 plasma treatment of the surface. We propose a model for H2O2 generation based on recombination of the hydroxyl radicals produced from the surface hydroxyl groups in the water-solid contact process. Our observations show that the spontaneous generation of H2O2 is universal on the surfaces of soil and atmospheric fine particles in a humid environment.
Collapse
Affiliation(s)
- Bolei Chen
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yu Xia
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Rongxiang He
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Hongqian Sang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Wenchang Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
| | - Juan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lufeng Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
| | - Shishang Guo
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yong Liang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
10
|
Gallo A, Musskopf NH, Liu X, Yang Z, Petry J, Zhang P, Thoroddsen S, Im H, Mishra H. On the formation of hydrogen peroxide in water microdroplets. Chem Sci 2022; 13:2574-2583. [PMID: 35340850 PMCID: PMC8890092 DOI: 10.1039/d1sc06465g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Recent reports on the formation of hydrogen peroxide (H2O2) in water microdroplets produced via pneumatic spraying or capillary condensation have garnered significant attention. How covalent bonds in water could break under such mild conditions challenges our textbook understanding of physical chemistry and water. While there is no definitive answer, it has been speculated that ultrahigh electric fields at the air-water interface are responsible for this chemical transformation. Here, we report on our comprehensive experimental investigation of H2O2 formation in (i) water microdroplets sprayed over a range of liquid flow-rates, (shearing) air flow rates, and air composition, and (ii) water microdroplets condensed on hydrophobic substrates formed via hot water or humidifier under controlled air composition. Specifically, we assessed the contributions of the evaporative concentration and shock waves in sprays and the effects of trace O3(g) on the H2O2 formation. Glovebox experiments revealed that the H2O2 formation in water microdroplets was most sensitive to the air-borne ozone (O3) concentration. In the absence of O3(g), we could not detect H2O2(aq) in sprays or condensates (detection limit ≥250 nM). In contrast, microdroplets exposed to atmospherically relevant O3(g) concentration (10-100 ppb) formed 2-30 µM H2O2(aq), increasing with the gas-liquid surface area, mixing, and contact duration. Thus, the water surface area facilitates the O3(g) mass transfer, which is followed by the chemical transformation of O3(aq) into H2O2(aq). These findings should also help us understand the implications of this chemistry in natural and applied contexts.
Collapse
Affiliation(s)
- Adair Gallo
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Nayara H Musskopf
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xinlei Liu
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Ziqiang Yang
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jeferson Petry
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Peng Zhang
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Sigurdur Thoroddsen
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hong Im
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Himanshu Mishra
- Interfacial Lab (iLab), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
11
|
Davidse A, Zare RN. Effect of Relative Humidity in Air on the Transmission of Respiratory Viruses. MOLECULAR FRONTIERS JOURNAL 2021. [DOI: 10.1142/s252973252140006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viral respiratory infections have plagued mankind over its known history. Unfortunately, there has been a lack of meaningful progress in preventing the spread of viral respiratory infections globally. The central dogma appears to be that viruses are the villains. This framing focuses on a viral load balance (VLB) in the air. It follows that physical dilution through various means have been the primary focus of attempts to reduce the spread of infections. The problem of obesity provides a good example of how paradigm blindness can slow down progress in a field. Obesity has been framed as an energy balance disorder that blames overeating and lack of exercise for weight gain. Reframing obesity as a disorder of fat metabolism and storage caused by the quantity and quality of carbohydrates in the diet, referred to as the carbohydrate-insulin model (CIM), opened an alternative line of questioning with a testable hypothesis. Similarly, we postulate an alternative way to frame the spread of viral respiratory infections that would lead to new insights and potentially new ways to prevent infections. It has long been recognized that viral respiratory infections show a pronounced seasonal variation, referred to as seasonal forging, such that they increase in the winter but decrease or virtually disappear in the summer. In temperate regions, people spend over 90% of their time indoors. This is, therefore, where most respiratory infections are expected to occur. Evidence has been accumulating for decades on the strong correlation between variations in indoor relative humidity (RH) and variations in infection rates. Within a RH Goldilocks zone of 40%-60%, encapsulated viruses like influenza and SARS are optimally inactivated outside the infected host. Below 40% and above 80%, viruses can survive for extended periods in the air or on surfaces. This may explain in part the seasonality of infections as the indoor level of RH in winter is typically about 20% and above 40% in summer in temperate regions. However, the mechanism for the inactivation at midrange RH (in summer) is not well understood. This paper offers a hypothesis that could explain these observations. We have demonstrated that H2O2 and other reactive oxygen species (ROS) are formed spontaneously at the water-air interface of pure water microdroplets. Using only water and a nebulizing gas in the presence of oxygen, we have demonstrated the significant disinfectant potential of pure water microdroplets caused by the activity of H2O2 and other ROS. We postulate that spontaneous H2O2 and ROS formation in viruses containing exhaled microdroplets have a similar virucidal effect at mid-range RH. The droplet evaporation rate is sufficient to concentrate the solutes and provide enough time for reactions to occur at significantly higher rates than in bulk solutions. The concentration of H2O2 has also been shown to be positively correlated to RH. In addition, several other ROS/RNS may be present or formed through interactions with H2O2 that may act as even more effective virucide disinfectants to inactivate the virus. Below RH 40% evaporation happens too rapidly for these reactions to make an impact before the droplet is desiccated, and above RH 80% the solutes remain too diluted. Rapid inactivation of viruses at midrange RH may therefore play a greater role in preventing infections than physical dilution of virus load in the air through excessive mechanical ventilation. Similar to obesity, we suggest that a new paradigm that considers virus infectivity outside the host rather than the virus load balance in the air alone could greatly contribute to our understanding of respiratory infections. The proposed new “Relative Humidity Infectivity” RHI paradigm could explain the causal mechanisms underlying seasonal respiratory infections. This can point to better prevention strategies that avoid further distortion of our indoor environment and create conditions within which humans can thrive and be optimally protected. We need more focus on testing the various hypotheses and more data to determine which of the two paradigms will lead us in the right direction or how to use the best of both in an optimal combination. The stakes cannot be higher, and the potential for eradicating future viral respiratory pandemics with nature-based solutions may be right under our noses, literally.
Collapse
Affiliation(s)
- Adriaan Davidse
- PO Box 93167 Headon PO, Burlington, Ontario, L7M 4A3, Canada
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
12
|
Musskopf NH, Gallo A, Zhang P, Petry J, Mishra H. The Air-Water Interface of Water Microdroplets Formed by Ultrasonication or Condensation Does Not Produce H 2O 2. J Phys Chem Lett 2021; 12:11422-11429. [PMID: 34792369 DOI: 10.1021/acs.jpclett.1c02953] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent reports on the production of hydrogen peroxide (H2O2) on the surface of condensed water microdroplets without the addition of catalysts or additives have sparked significant interest. The underlying mechanism is thought to be ultrahigh electric fields at the air-water interface; smaller droplets present larger interfacial areas and produce higher (detectable) H2O2 yields. To gain insights into this phenomenon, we performed condensation experiments and quantified H2O2 formation as a function of the vapor source. Specifically, we compared the H2O2 concentration in water microdroplets condensed from the vapor realized via (i) heating water in the range of 50-70 °C and (ii) ultrasonic humidification (as exploited in the original report). Experimental results revealed that the H2O2 level inside water microdroplets condensed via heating water was below our detection limit (≥0.25 μM), regardless of the droplet size or the substrate wettability. In contrast, water droplets condensed via ultrasonic humidification contained significantly higher (∼1 μM) H2O2 concentrations. We conclude that the ultrasonic humidifiers contribute to H2O2 production, not droplet interfacial effects.
Collapse
Affiliation(s)
- Nayara H Musskopf
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Adair Gallo
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Peng Zhang
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Jeferson Petry
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| | - Himanshu Mishra
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Effect of Relative Humidity on Hydrogen Peroxide Production in Water Droplets – CORRIGENDUM. QRB DISCOVERY 2021. [PMID: 37529682 PMCID: PMC10392619 DOI: 10.1017/qrd.2021.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
[This corrects the article DOI: 10.1017/qrd.2021.6.].
Collapse
|