1
|
Li F, Dong C, Chen T, Yu S, Chen C. Current Advances and Future Prospects of Bulk and Microfluidic-Enabled Electroporation Systems. Biotechnol Bioeng 2025; 122:1347-1365. [PMID: 40042165 DOI: 10.1002/bit.28965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Reversible electroporation (EP) is a pivotal biophysical technology that leverages pulsed electric fields to enhance the permeability of cell membranes, thereby facilitating the introduction of foreign material into cells. In this review, we provide an overview of bulk electroporators and microfluidic-enabled EP systems, focusing on their controversial points of mechanisms, architectures, and parameter settings. Bulk electroporators have been extensively commercialized with settled form including pulse generator and accessories (i.e., EP cuvette and plates). Researchers have made efforts to increase the throughput and simplify the operation of bulk EP systems. Additionally, microfluidics has emerged as a promising technology for optimizing EP parameters and enhancing the performance. Given the significant structural differences between these two types of EP systems, their operating conditions such as temperature, voltage, and pulse parameters are discussed. Research tend to operate single cells under more concentrated electric field induced by low voltage, enabling a quantitative exogenous materials delivery and numerical simulation. However, due to cost constraints and properties of materials utilized in laboratories, the commercialization of laboratory prototypes has been impeded. Furthermore, the technological limitations, current commercialization status, and development trends have been examined.
Collapse
Affiliation(s)
- Fei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Digifluidic Biotech Inc., Zhuhai, China
| | - Cheng Dong
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai, China
| | | | - Siming Yu
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai, China
| |
Collapse
|
2
|
Agg KJ, Groves TS, Miao S, Fung YKC, Alderman OLG, Headen TF, Hughes TL, Smith GN, Youngs TGA, Tellam JP, Chen Y, Perkin S, Hallett JE. Specific ion effects enhance local structure in zwitterionic osmolyte solutions. Chem Sci 2025; 16:6770-6779. [PMID: 40144499 PMCID: PMC11934062 DOI: 10.1039/d5sc00286a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Zwitterionic osmolytes are widely known to have a protein-protective effect against high salt concentration, but a mechanistic picture of osmolyte function remains elusive. Here total scattering is used to determine the room temperature liquid structure of two model cytosol solutions containing trimethylglycine (TMG) with either sodium or potassium chloride. H/D isotopic substitution is used to obtain differential neutron scattering cross sections at multiple contrasts in addition to an X-ray structure factor, and an Empirical Potential Structure Refinement (EPSR) simulation is fitted to the experimental data. We reveal the nature of the interaction between TMG molecules and ions in solution, observing binding between cations and the TMG carboxylate group. We observe three key specific ion effects: first, that sodium ions are more tightly localised at the carboxylate group; second, that sodium localisation in turn promotes head-to-head bridging between carboxylate groups when compared to potassium or no added ions, resulting in strong oxygen-oxygen correlations; and third, that sodium ions promote TMG clusters with greater orientational order, more fully shielding the ion but also in turn limiting access to the carboxylate groups for other molecules. These observations have implications for the bioavailability and protein-stabilising effect of osmolytes under changing extracellular salt conditions.
Collapse
Affiliation(s)
- Kieran J Agg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | - Timothy S Groves
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | - Shurui Miao
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | - Y K Catherine Fung
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | - Oliver L G Alderman
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Thomas F Headen
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Terri-Louise Hughes
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Gregory N Smith
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Tristan G A Youngs
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - James P Tellam
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Yao Chen
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | - James E Hallett
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading Reading RG6 6AD UK
| |
Collapse
|
3
|
Springer CS, Pike MM, Barbara TM. Metabolic Energy is Stored in a Homeostatic Trans-Membrane Water Barochemical Gradient. J Membr Biol 2025; 258:135-160. [PMID: 40009106 DOI: 10.1007/s00232-024-00332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/13/2024] [Indexed: 02/27/2025]
Abstract
Trans-membrane water transport and co-transport is ubiquitous in cell biology. Integrated over all the cell's H2O transporters and co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water "exchange" is synchronized with the metabolic rate of the crucial Na+,K+-ATPase (NKA) enzyme: the active trans-membrane water cycling (AWC) phenomenon. Is AWC futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy (ΔG) calculations for the many transport reactions with known water stoichiometries. Including established intracellular pressure (Pi) magnitudes, these reveal an outward trans-membrane H2O barochemical ΔG gradient comparable to that of the well-known inward Na+ electrochemical ΔG gradient. For most co-influxers, these two gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. Our analyses include glucose, glutamate-, gamma-aminobutyric acid (GABA), and lactate- transporters. 2%-4% Pi alterations can lead to disastrous metabolite concentrations. For the neurotransmitters glutamate- and GABA, very small astrocytic Pi changes can allow/disallow synaptic transmission. Unlike the Na+ and K+ electrochemical steady-states, the H2O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate trans-membrane pressure gradients. A feedback loop inherent in the opposing Na+ electrochemical and H2O barochemical gradients regulates AQP-catalyzed water flux as integral to AWC. A re-consideration of the underlying nature of Pi is also necessary. AWC is not a futile cycle but is inherent to the cell's "NKA system"-a new, fundamental aspect of biology. Metabolic energy is stored in the trans-membrane water barochemical gradient.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science University, 3181 S. W. Sam Jackson Park Road, L452, Portland, OR, 97239, USA.
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, USA.
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health and Science University, 3181 S. W. Sam Jackson Park Road, L452, Portland, OR, 97239, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Thomas M Barbara
- Advanced Imaging Research Center, Oregon Health and Science University, 3181 S. W. Sam Jackson Park Road, L452, Portland, OR, 97239, USA
| |
Collapse
|
4
|
Jaworska K, Senior JJ, Brüning-Richardson A, Smith AM. The effect of elevating extracellular CaCl 2: Important considerations for tissue engineering applications. Tissue Cell 2024; 91:102615. [PMID: 39579735 DOI: 10.1016/j.tice.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Polysaccharides such as sodium alginate, pectin and gellan gum are widely used biomaterials, for their ability to easily form hydrogels in the presence of divalent metal ions, such as calcium - a process often cited as a mild crosslinking mechanism. However, when using these materials as substrates for tissue engineering, there is a lack of extensive studies that investigate the impact of elevated calcium concentrations on cell health and behaviour. In this study, we performed an in-depth exploration to understand the potential effects of raising extracellular CaCl2 on cell viability, proliferation, morphology and migration. We used an established glioblastoma (GBM) cell line (U251), human dermal fibroblasts (HDF), and murine osteoblasts (MC3T3) to assess the consequences of using CaCl2 in tissue engineered models to help reevaluate biomaterial suitability and enhance standardisation practices in the field of tissue engineering. Our findings revealed that the addition of CaCl2 induced notable morphological changes in GBM cells when cultured in 3D hydrogels with excess CaCl2 added, leading to a transition from mesenchymal to amoeboid phenotypes, even at a concentration as low as 8 mM. Furthermore, cell viability was reduced in a concentration-dependent manner across all cell types, and migration was also affected. Despite the widespread use of high CaCl2 concentrations to facilitate scaffold gelation, our research unveils that there can be significant risks to cell viability, proliferation, morphology, and migration when such practices are not preceded by cell line-specific experimentation and thorough standardization procedures. This highlights the importance of careful consideration and optimisation of CaCl2 concentration when used as a crosslinking agent for hydrogels intended for use in tissue engineering applications that demand accurate recapitulation of cellular responses and physiological conditions.
Collapse
Affiliation(s)
- Kayley Jaworska
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Jessica J Senior
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Anke Brüning-Richardson
- Department of Physical and Life Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Alan M Smith
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom.
| |
Collapse
|
5
|
Dunn RA, Tinsley GM, Palmer TB, Benjamin CL, Sekiguchi Y. The Efficacy of Nutritional Strategies and Ergogenic Aids on Acute Responses and Chronic Adaptations to Exertional-Heat Exposure: A Narrative Review. Nutrients 2024; 16:3792. [PMID: 39599581 PMCID: PMC11597519 DOI: 10.3390/nu16223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Global warming is attributed to an increased frequency of high ambient temperatures and humidity, elevating the prevalence of high-temperature-related illness and death. Evidence over recent decades highlights that tailored nutritional strategies are essential to improve performance and optimise health during acute and chronic exertional-heat exposure. Therefore, the purpose of this review is to discuss the efficacy of various nutritional strategies and ergogenic aids on responses during and following acute and chronic exertional-heat exposure. An outline is provided surrounding the application of various nutritional practices (e.g., carbohydrate loading, fluid replacement strategies) and ergogenic aids (e.g., caffeine, creatine, nitrate, tyrosine) to improve physiological, cognitive, and recovery responses to acute exertional-heat exposure. Additionally, this review will evaluate if the magnitude and time course of chronic heat adaptations can be modified with tailored supplementation practices. This review highlights that there is robust evidence for the use of certain ergogenic aids and nutritional strategies to improve performance and health outcomes during exertional-heat exposure. However, equivocal findings across studies appear dependent on factors such as exercise testing modality, duration, and intensity; outcome measures in relation to the ergogenic aid's proposed mechanism of action; and sex-specific responses. Collectively, this review provides evidence-based recommendations and highlights areas for future research that have the potential to assist with prescribing specific nutritional strategies and ergogenic aids in populations frequently exercising in the heat. Future research is required to establish dose-, sex-, and exercise-modality-specific responses to various nutritional practices and ergogenic aid use for acute and chronic exertional-heat exposure.
Collapse
Affiliation(s)
- Ryan A. Dunn
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Ty B. Palmer
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | | | - Yasuki Sekiguchi
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| |
Collapse
|
6
|
Abrusán G, Zelezniak A. Cellular location shapes quaternary structure of enzymes. Nat Commun 2024; 15:8505. [PMID: 39353940 PMCID: PMC11445431 DOI: 10.1038/s41467-024-52662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The main forces driving protein complex evolution are currently not well understood, especially in homomers, where quaternary structure might frequently evolve neutrally. Here we examine the factors determining oligomerisation by analysing the evolution of enzymes in circumstances where homomers rarely evolve. We show that 1) In extracellular environments, most enzymes with known structure are monomers, while in the cytoplasm homomers, indicating that the evolution of oligomers is cellular environment dependent; 2) The evolution of quaternary structure within protein orthogroups is more consistent with the predictions of constructive neutral evolution than an adaptive process: quaternary structure is gained easier than it is lost, and most extracellular monomers evolved from proteins that were monomers also in their ancestral state, without the loss of interfaces. Our results indicate that oligomerisation is context-dependent, and even when adaptive, in many cases it is probably not driven by the intrinsic properties of enzymes, like their biochemical function, but rather the properties of the environment where the enzyme is active. These factors might be macromolecular crowding and excluded volume effects facilitating the evolution of interfaces, and the maintenance of cellular homeostasis through shaping cytoplasm fluidity, protein degradation, or diffusion rates.
Collapse
Affiliation(s)
- György Abrusán
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, London, UK.
| | - Aleksej Zelezniak
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, London, UK
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
7
|
Yang T, Nian Y, Lin H, Li J, Lin X, Li T, Wang R, Wang L, Beattie GA, Zhang J, Fan M. Structure and mechanism of the osmoregulated choline transporter BetT. SCIENCE ADVANCES 2024; 10:eado6229. [PMID: 39141726 PMCID: PMC11323884 DOI: 10.1126/sciadv.ado6229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
The choline-glycine betaine pathway plays an important role in bacterial survival in hyperosmotic environments. Osmotic activation of the choline transporter BetT promotes the uptake of external choline for synthesizing the osmoprotective glycine betaine. Here, we report the cryo-electron microscopy structures of Pseudomonas syringae BetT in the apo and choline-bound states. Our structure shows that BetT forms a domain-swapped trimer with the C-terminal domain (CTD) of one protomer interacting with the transmembrane domain (TMD) of a neighboring protomer. The substrate choline is bound within a tryptophan prism at the central part of TMD. Together with functional characterization, our results suggest that in Pseudomonas species, including the plant pathogen P. syringae and the human pathogen Pseudomonas aeruginosa, BetT is locked at a low-activity state through CTD-mediated autoinhibition in the absence of osmotic stress, and its hyperosmotic activation involves the release of this autoinhibition.
Collapse
Affiliation(s)
- Tianjiao Yang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuwei Nian
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huajian Lin
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiang Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianming Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longfei Wang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Springer CS, Pike MM, Barbara TM. A Futile Cycle?: Tissue Homeostatic Trans-Membrane Water Co-Transport: Kinetics, Thermodynamics, Metabolic Consequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589812. [PMID: 38659823 PMCID: PMC11042311 DOI: 10.1101/2024.04.17.589812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The phenomenon of active trans-membrane water cycling (AWC) has emerged in little over a decade. Here, we consider H2O transport across cell membranes from the origins of its study. Historically, trans-membrane water transport processes were classified into: A) compensating bidirectional fluxes ("exchange"), and B) unidirectional flux ("net flow") categories. Recent literature molecular structure determinations and molecular dynamic (MD) simulations indicate probably all the many different hydrophilic substrate membrane co-transporters have membrane-spanning hydrophilic pathways and co-transport water along with their substrates, and that they individually catalyze category A and/or B water flux processes, although usually not simultaneously. The AWC name signifies that, integrated over the all the cell's co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water exchange (category A) is synchronized with the metabolic rate of the crucial Na+,K+-ATPase (NKA) enzyme. A literature survey indicates the stoichiometric (category B) water/substrate ratios of individual co-transporters are often very large. The MD simulations also suggest how different co-transporter reactions can be kinetically coupled molecularly. Is this (Na+,K+-ATPase rate-synchronized) cycling futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy analyses of the many transport reactions with known water stoichiometries. Free energy calculations, using literature intracellular pressure (Pi) values reveals there is an outward trans-membrane H2O barochemical gradient of magnitude comparable to that of the well-known inward Na+ electrochemical gradient. For most co-influxers, these gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. The thermodynamic analyses include glucose, glutamate-, gamma-aminobutyric acid (GABA), and lactate- transporters. 2%-4% Pi alterations can lead to disastrous concentration levels. For the neurotransmitters glutamate- and GABA, very small astrocytic Pi changes can allow/disallow synaptic transmission. Unlike the Na+ and K+ electrochemical steady-states, the H2O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate the trans-membrane pressure gradient. A feedback loop inherent in the opposing Na+ electrochemical and H2O barochemical gradients regulates AQP-catalyzed water flux as an integral AWC aspect. These results also require a re-consideration of the underlying nature of Pi. Active trans-membrane water cycling is not futile, but is inherent to the cell's "NKA system" - a new, fundamental aspect of biology.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center
- Department of Chemical Physiology and Biochemistry
- Department of Biomedical Engineering
- Brenden-Colson Center for Pancreatic Care
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | - Martin M Pike
- Advanced Imaging Research Center
- Department of Biomedical Engineering
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | | |
Collapse
|
9
|
Vallina Estrada E, Zhang N, Wennerström H, Danielsson J, Oliveberg M. Diffusive intracellular interactions: On the role of protein net charge and functional adaptation. Curr Opin Struct Biol 2023; 81:102625. [PMID: 37331204 DOI: 10.1016/j.sbi.2023.102625] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
A striking feature of nucleic acids and lipid membranes is that they all carry net negative charge and so is true for the majority of intracellular proteins. It is suggested that the role of this negative charge is to assure a basal intermolecular repulsion that keeps the cytosolic content suitably 'fluid' for function. We focus in this review on the experimental, theoretical and genetic findings which serve to underpin this idea and the new questions they raise. Unlike the situation in test tubes, any functional protein-protein interaction in the cytosol is subject to competition from the densely crowded background, i.e. surrounding stickiness. At the nonspecific limit of this stickiness is the 'random' protein-protein association, maintaining profuse populations of transient and constantly interconverting complexes at physiological protein concentrations. The phenomenon is readily quantified in studies of the protein rotational diffusion, showing that the more net negatively charged a protein is the less it is retarded by clustering. It is further evident that this dynamic protein-protein interplay is under evolutionary control and finely tuned across organisms to maintain optimal physicochemical conditions for the cellular processes. The emerging picture is then that specific cellular function relies on close competition between numerous weak and strong interactions, and where all parts of the protein surfaces are involved. The outstanding challenge is now to decipher the very basics of this many-body system: how the detailed patterns of charged, polar and hydrophobic side chains not only control protein-protein interactions at close- and long-range but also the collective properties of the cellular interior as a whole.
Collapse
Affiliation(s)
- Eloy Vallina Estrada
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nannan Zhang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry, Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
10
|
Satari L, Iglesias A, Porcar M. The Microbiome of Things: Appliances, Machines, and Devices Hosting Artificial Niche-Adapted Microbial Communities. Microorganisms 2023; 11:1507. [PMID: 37375009 PMCID: PMC10304627 DOI: 10.3390/microorganisms11061507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
As it is the case with natural substrates, artificial surfaces of man-made devices are home to a myriad of microbial species. Artificial products are not necessarily characterized by human-associated microbiomes; instead, they can present original microbial populations shaped by specific environmental-often extreme-selection pressures. This review provides a detailed insight into the microbial ecology of a range of artificial devices, machines, and appliances, which we argue are specific microbial niches that do not necessarily fit in the "build environment" microbiome definition. Instead, we propose here the Microbiome of Things (MoT) concept analogous to the Internet of Things (IoT) because we believe it may be useful to shed light on human-made, but not necessarily human-related, unexplored microbial niches.
Collapse
Affiliation(s)
- Leila Satari
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
- Darwin Bioprospecting Excellence SL., Parc Científic, Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
11
|
Wennerström H, Sparr E, Stenhammar J. Thermal fluctuations and osmotic stability of lipid vesicles. Phys Rev E 2022; 106:064607. [PMID: 36671149 DOI: 10.1103/physreve.106.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Biological membranes constantly change their shape in response to external stimuli, and understanding the remodeling and stability of vesicles in heterogeneous environments is therefore of fundamental importance for a range of cellular processes. One crucial question is how vesicles respond to external osmotic stresses, imposed by differences in solute concentrations between the vesicle interior and exterior. Previous analyses of the membrane bending energy have predicted that micron-sized giant unilamellar vesicles (GUVs) should become globally deformed already for nanomolar concentration differences, in contrast to experimental findings that find deformations at much higher osmotic stresses. In this article, we analyze the mechanical stability of a spherical vesicle exposed to an external osmotic pressure in a statistical-mechanical model, including the effect of thermally excited membrane bending modes. We find that the inclusion of thermal fluctuations of the vesicle shape changes renders the vesicle deformation continuous, in contrast to the abrupt transition in the athermal picture. Crucially, however, the predicted critical pressure associated with global vesicle deformation remains the same as when thermal fluctuations are neglected, approximately six orders of magnitude smaller than the typical collapse pressure recently observed experimentally for GUVs. We conclude by discussing possible sources of this persisting dissonance between theory and experiments.
Collapse
Affiliation(s)
- Håkan Wennerström
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|