1
|
Ramadan Q, Hazaymeh R, Zourob M. A Versatile and Modular Microfluidic System for Dynamic Cell Culture and Cellular Interactions. MICROMACHINES 2025; 16:237. [PMID: 40047680 PMCID: PMC11857257 DOI: 10.3390/mi16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 03/09/2025]
Abstract
A versatile and modular microfluidic system for cell co-culture has been developed. Microfluidic chips, each featuring dual compartments separated by a porous membrane, have been fabricated and assembled within the system to facilitate fluidic interconnection and cell-cell communication through the chip assembly. A set of fluidic valves has been successfully integrated to regulate the flow through the chip assembly. The system allows for chip assembly in various arrangements, including in parallel, in series, and complex connections. Individual chips can be interconnected or disconnected within the system at any time. Moreover, the spatial order and orientation of the chips can be adjusted as needed, enabling the study of different cell-cell arrangements and the impact of the presence or absence of specific cell types. The utility of the system has been evaluated by culturing and interconnecting multi-monolayers of intestinal epithelial cells as a model of the complex cellular system. Epithelial monolayers were grown in multiple chips and interconnected in various configurations. The transepithelial electrical resistance and permeability profiles were investigated in detail for these configurations upon treatment of the cells with dextran sulfate sodium. Immune cells were stimulated through the epithelial layers and the expression of inflammatory cytokines was detected. This miniaturized platform offers controlled conditions for co-culturing key cellular components and assessing potential therapeutic agents in a physiologically relevant setting.
Collapse
Affiliation(s)
- Qasem Ramadan
- College of Science & General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Rana Hazaymeh
- College of Pharmacy, Almaarefa University, Riyadh 13713, Saudi Arabia;
| | - Mohammed Zourob
- College of Science & General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
2
|
Wang H, Xu C, Tan M, Su W. Advanced gut-on-chips for assessing carotenoid absorption, metabolism, and transport. Crit Rev Food Sci Nutr 2023; 65:1344-1362. [PMID: 38095598 DOI: 10.1080/10408398.2023.2293250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Bioengineered strategies enable gut chips to faithfully replicate essential features of intestinal microsystems, encompassing geometric properties, peristalsis, intraluminal fluid flow, oxygen gradients, and the microbiome. This emerging technique serves as a powerful tool for nutrition studies by emulating the absorption and distribution processes in a manner highly relevant to human physiology. It offers unprecedented accessibility for investigating the mechanisms governing nutrition metabolism. While the application of gut-on-chip models in disease modeling and drug screening has been extensively explored, their potential in dietary nutrition research remains relatively unexplored. This comprehensive review provides an overview of the different approaches employed in constructing gut-on-chip platforms using diverse cell sources and niche mimics. Furthermore, it explores the applications and prospects of gut-on-chips in nutrition-related investigations, with a specific focus on carotenoid transport, absorption, and metabolism. Lastly, this review discusses the future development trajectory of this groundbreaking technology paradigm, highlighting its broad applicability in the field of food technology. By harnessing the capabilities of these state-of-the-art techniques within gut chip platforms, researchers can establish a robust scientific foundation for unraveling the intricate mechanisms that govern the behavior and functional properties of carotenoids.
Collapse
Affiliation(s)
- Hui Wang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Dalian, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University Medical Center, New York, USA
| | - Mingqian Tan
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wentao Su
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Donkers JM, van der Vaart JI, van de Steeg E. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies. Biomimetics (Basel) 2023; 8:226. [PMID: 37366821 PMCID: PMC10296225 DOI: 10.3390/biomimetics8020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| | - Jamie I. van der Vaart
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| |
Collapse
|
4
|
Wu L, Ai Y, Xie R, Xiong J, Wang Y, Liang Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. LAB ON A CHIP 2023; 23:1192-1212. [PMID: 36644984 DOI: 10.1039/d2lc00804a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organoids/organs-on-a-chip open up new frontiers for basic and clinical research of intestinal diseases. Species-specific differences hinder research on animal models, while organoids are emerging as powerful tools due to self-organization from stem cells and the reproduction of the functional properties in vivo. Organs-on-a-chip is also accelerating the process of faithfully mimicking the intestinal microenvironment. And by combining organoids and organ-on-a-chip technologies, they further are expected to serve as innovative preclinical tools and could outperform traditional cell culture models or animal models in the future. Above all, organoids/organs-on-a-chip with other strategies like genome editing, 3D printing, and organoid biobanks contribute to modeling intestinal homeostasis and disease. Here, the current challenges and future trends in intestinal pathophysiological models will be summarized.
Collapse
Affiliation(s)
- Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
5
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
6
|
Liang D, Su W, Tan M. Advances of microfluidic intestine-on-a-chip for analyzing anti-inflammation of food. Crit Rev Food Sci Nutr 2021; 62:4418-4434. [PMID: 33480263 DOI: 10.1080/10408398.2021.1875395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microfluidic intestine-on-a-chip enables novel means of emulating human intestinal pathophysiology in vitro, which can potentially reduce animal testing and substitute simple 2D culture system. Though a great deal of work has been done in the development of microfluidic platforms for intestinal disease modeling and drug screening, potential investigation of the effect of bioactive food compounds on intestinal inflammation remains largely unexplored. In this review, different biomaterials and chip designs have been explored in the fabrication of intestine-on-a-chip. Other key parameters must be carefully controlled and selected, including shear stress, cell type and cell co-culture spatial configuration, etc. Appropriate techniques to quantify the barrier integrity including trans-epithelial electric resistance, specific tight junction markers and permeability measurements should be standardized and compared with in vivo data. Integration of the gut microbiome and the provision of intestinal-specific environment are the key parameters to realize the in vivo intestinal model simulation and accelerate the screening efficiency of bioactive food compounds.
Collapse
Affiliation(s)
- Duo Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Chapin AA, Rajasekaran PR, Quan DN, Hu L, Herberholz J, Bentley WE, Ghodssi R. Electrochemical measurement of serotonin by Au-CNT electrodes fabricated on microporous cell culture membranes. MICROSYSTEMS & NANOENGINEERING 2020; 6:90. [PMID: 34567700 PMCID: PMC8433419 DOI: 10.1038/s41378-020-00184-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 05/06/2023]
Abstract
Gut-brain axis (GBA) communication relies on serotonin (5-HT) signaling between the gut epithelium and the peripheral nervous system, where 5-HT release patterns from the basolateral (i.e., bottom) side of the epithelium activate nerve afferents. There have been few quantitative studies of this gut-neuron signaling due to a lack of real-time measurement tools that can access the basolateral gut epithelium. In vitro platforms allow quantitative studies of cultured gut tissue, but they mainly employ offline and endpoint assays that cannot resolve dynamic molecular-release patterns. Here, we present the modification of a microporous cell culture membrane with carbon nanotube-coated gold (Au-CNT) electrodes capable of continuous, label-free, and direct detection of 5-HT at physiological concentrations. Electrochemical characterization of single-walled carbon nanotube (SWCNT)-coated Au electrodes shows increased electroactive surface area, 5-HT specificity, sensitivity, and saturation time, which are correlated with the CNT film drop-cast volume. Two microliters of CNT films, with a 10-min saturation time, 0.6 μA/μM 5-HT sensitivity, and reliable detection within a linear range of 500 nM-10 μM 5-HT, can be targeted for high-concentration, high-time-resolution 5-HT monitoring. CNT films (12.5 μL) with a 2-h saturation time, 4.5 μA/μM 5-HT sensitivity, and quantitative detection in the linear range of 100 nM-1 μM can target low concentrations with low time resolution. These electrodes achieved continuous detection of dynamic diffusion across the porous membrane, mimicking basolateral 5-HT release from cells, and detection of cell-released 5-HT from separately cultured RIN14B cell supernatant. Electrode-integrated cell culture systems such as this can improve in vitro molecular detection mechanisms and aid in quantitative GBA signaling studies.
Collapse
Affiliation(s)
- Ashley A. Chapin
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Systems Research, College Park, MD 20740 USA
| | | | - David N. Quan
- Fischell Department of Bioengineering, College Park, MD 20742 USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, College Park, MD 20740 USA
| | - Jens Herberholz
- Department of Psychology and Neuroscience and Cognitive Science Program, College Park, MD 20740 USA
| | - William E. Bentley
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850 USA
- Robert E. Fischell Institute for Biomedical Devices, Rockville, MD 20850 USA
| | - Reza Ghodssi
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Systems Research, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, Rockville, MD 20850 USA
- Department of Electrical and Computer Engineering, College Park, MD 20742 USA
| |
Collapse
|
8
|
Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S. Gut-on-chip: Recreating human intestine in vitro. J Tissue Eng 2020; 11:2041731420965318. [PMID: 33282173 PMCID: PMC7682210 DOI: 10.1177/2041731420965318] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
The human gut is important for food digestion and absorption, as well as a venue for a large number of microorganisms that coexist with the host. Although numerous in vitro models have been proposed to study intestinal pathology or interactions between intestinal microbes and host, they are far from recapitulating the real intestinal microenvironment in vivo. To assist researchers in further understanding gut physiology, the intestinal microbiome, and disease processes, a novel technology primarily based on microfluidics and cell biology, called "gut-on-chip," was developed to simulate the structure, function, and microenvironment of the human gut. In this review, we first introduce various types of gut-on-chip systems, then highlight their applications in drug pharmacokinetics, host-gut microbiota crosstalk, and nutrition metabolism. Finally, we discuss challenges in this field and prospects for better understanding interactions between intestinal flora and human hosts, and then provide guidance for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yunqing Xiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiongfei Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqiang Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, Read MN, Valtchev P, Khademhosseini A, Dehghani F. Models of the Gut for Analyzing the Impact of Food and Drugs. Adv Healthc Mater 2019; 8:e1900968. [PMID: 31592579 DOI: 10.1002/adhm.201900968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.
Collapse
Affiliation(s)
- Chiara Anna Maria Fois
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Thi Yen Loan Le
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Dale David McClure
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Mark Norman Read
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering Department of Bioengineering Department of Radiology California NanoSystems Institute (CNSI) University of California Los Angeles CA 90095 USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
10
|
Ponce de León-Rodríguez MDC, Guyot JP, Laurent-Babot C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Crit Rev Food Sci Nutr 2018; 59:3648-3666. [DOI: 10.1080/10408398.2018.1506734] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Jean-Pierre Guyot
- NUTRIPASS—University of Montpellier, IRD, Montpellier SupAgro, Montpellier, France
| | | |
Collapse
|
11
|
|
12
|
Bordoni A, Danesi F, Dardevet D, Dupont D, Fernandez AS, Gille D, Nunes dos Santos C, Pinto P, Re R, Rémond D, Shahar DR, Vergères G. Dairy products and inflammation: A review of the clinical evidence. Crit Rev Food Sci Nutr 2017; 57:2497-2525. [DOI: 10.1080/10408398.2014.967385] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Francesca Danesi
- Department of Agri-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Dominique Dardevet
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Didier Dupont
- INRA, Joint Research Unit 1253, Science & Technology of Milk and Egg Products, Rennes, France
| | - Aida S. Fernandez
- Department of Human Nutrition, Leatherhead Food Research, Leatherhead, United Kingdom
| | - Doreen Gille
- Agroscope, Federal Department of Economic Affairs, Education and Research EAER, Berne, Switzerland
| | - Claudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal
- Insituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paula Pinto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal
- Escola Superior Agrária, Insituto Politécnico de Santarém, Santarém Portugal
| | - Roberta Re
- Department of Human Nutrition, Leatherhead Food Research, Leatherhead, United Kingdom
| | - Didier Rémond
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Danit R. Shahar
- The S. Daniel Abraham International Center for Health and Nutrition, Department of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guy Vergères
- Agroscope, Federal Department of Economic Affairs, Education and Research EAER, Berne, Switzerland
| |
Collapse
|
13
|
Lefebvre DE, Venema K, Gombau L, Valerio LG, Raju J, Bondy GS, Bouwmeester H, Singh RP, Clippinger AJ, Collnot EM, Mehta R, Stone V. Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 2014; 9:523-42. [PMID: 25119418 DOI: 10.3109/17435390.2014.948091] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered metal/mineral, lipid and biochemical macromolecule nanomaterials (NMs) have potential applications in food. Methodologies for the assessment of NM digestion and bioavailability in the gastrointestinal tract are nascent and require refinement. A working group was tasked by the International Life Sciences Institute NanoRelease Food Additive project to review existing models of the gastrointestinal tract in health and disease, and the utility of these models for the assessment of the uptake of NMs intended for food. Gastrointestinal digestion and absorption could be addressed in a tiered approach using in silico computational models, in vitro non-cellular fluid systems and in vitro cell culture models, after which the necessity of ex vivo organ culture and in vivo animal studies can be considered. Examples of NM quantification in gastrointestinal tract fluids and tissues are emerging; however, few standardized analytical techniques are available. Coupling of these techniques to gastrointestinal models, along with further standardization, will further strengthen methodologies for risk assessment.
Collapse
Affiliation(s)
- David E Lefebvre
- Regulatory Toxicology Research Division, Food Directorate, Health Canada , Ottawa , Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M. Micro total analysis systems: fundamental advances and biological applications. Anal Chem 2014; 86:95-118. [PMID: 24274655 PMCID: PMC3951881 DOI: 10.1021/ac403688g] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Tom G. Mickleburgh
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Kathleen A. Sellens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Melissa Pressnall
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
15
|
|