1
|
Effect of feeding frequency on performance, nutrient digestibility, energy and nitrogen balances in juvenile African catfish (Clarias gariepinus) fed diets with two levels of crystalline methionine. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Maas RM, Deng Y, Dersjant-Li Y, Petit J, Verdegem MCJ, Schrama JW, Kokou F. Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci Rep 2021; 11:8221. [PMID: 33859242 PMCID: PMC8050056 DOI: 10.1038/s41598-021-87408-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.
Collapse
Affiliation(s)
- Roel M. Maas
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yale Deng
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Jules Petit
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc C. J. Verdegem
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan W. Schrama
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Fotini Kokou
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Effects and interactions between phytase, xylanase and β-glucanase on growth performance and nutrient digestibility in Nile tilapia. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
What Is the Impact of Diet on Nutritional Diarrhea Associated with Gut Microbiota in Weaning Piglets: A System Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6916189. [PMID: 31976326 PMCID: PMC6949732 DOI: 10.1155/2019/6916189] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Piglets experience severe growth challenges and diarrhea after weaning due to nutritional, social, psychological, environmental, and physiological changes. Among these changes, the nutritional factor plays a key role in postweaning health. Dietary protein, fibre, starch, and electrolyte levels are highly associated with postweaning nutrition diarrhea (PWND). In this review, we mainly discuss the high protein, fibre, resistant starch, and electrolyte imbalance in diets that induce PWND, with a focus on potential mechanisms in weaned piglets.
Collapse
|
5
|
Magnoni LJ, Novais SC, Eding E, Leguen I, Lemos MFL, Ozório ROA, Geurden I, Prunet P, Schrama JW. Acute Stress and an Electrolyte- Imbalanced Diet, but Not Chronic Hypoxia, Increase Oxidative Stress and Hamper Innate Immune Status in a Rainbow Trout ( Oncorhynchus mykiss) Isogenic Line. Front Physiol 2019; 10:453. [PMID: 31068834 PMCID: PMC6491711 DOI: 10.3389/fphys.2019.00453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
In aquaculture, fish may be exposed to sub-optimal rearing conditions, which generate a stress response if full adaptation is not displayed. However, our current knowledge of several coexisting factors that may give rise to a stress response is limited, in particular when both chronic and acute stressors are involved. This study investigated changes in metabolic parameters, oxidative stress and innate immune markers in a rainbow trout (Oncorhynchus mykiss) isogenic line exposed to a combination of dietary (electrolyte-imbalanced diet, DEB 700 mEq Kg-1) and environmental (hypoxia, 4.5 mg O2 L-1) challenges and their respective controls (electrolyte-balanced diet, DEB 200 mEq Kg-1 and normoxia, 7.9 or mg O2 L-1) for 49 days. At the end of this period, fish were sampled or subjected to an acute stressor (2 min of handling/confinement) and then sampled. Feeding trout an electrolyte-imbalanced diet produced a reduction in blood pH, as well as increases in cortisol levels, hepato-somatic index (HSI) and total energy content in the liver. The ratio between the lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) activities decreased in the liver of trout fed the DEB 700 diet, but increased in the heart, suggesting a different modulation of metabolic capacity by the dietary challenge. Several markers of oxidative stress in the liver of trout, mainly related to the glutathione antioxidant system, were altered when fed the electrolyte-imbalanced diet. The dietary challenge was also associated with a decrease in the alternative complement pathway activity (ACH50) in plasma, suggesting an impaired innate immune status in that group. Trout subjected to the acute stressor displayed reduced blood pH values, higher plasma cortisol levels as well as increased levels of metabolic markers associated with oxidative stress in the liver. An interaction between diet and acute stressor was detected for oxidative stress markers in the liver of trout, showing that the chronic electrolyte-imbalance impairs the response of rainbow trout to handling/confinement. However, trout reared under chronic hypoxia only displayed changes in parameters related to energy use in both liver and heart. Taken together, these results suggest that trout displays an adaptative response to chronic hypoxia. Conversely, the dietary challenge profoundly affected fish homeostasis, resulting in an impaired physiological response leading to stress, which then placed constraints on a subsequent acute challenge.
Collapse
Affiliation(s)
- Leonardo J. Magnoni
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Sara C. Novais
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Ep Eding
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Isabelle Leguen
- Laboratoire de Physiologie et Génomique des Poissons, Institut National de la Recherche Agronomique, Rennes, France
| | - Marco F. L. Lemos
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Rodrigo O. A. Ozório
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Inge Geurden
- Nutrition Metabolisme Aquaculture (NuMeA)- Institut National de la Recherche Agronomique (INRA), Saint-Pée-sur-Nivelle, France
| | - Patrick Prunet
- Laboratoire de Physiologie et Génomique des Poissons, Institut National de la Recherche Agronomique, Rennes, France
| | - Johan W. Schrama
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
6
|
Magnoni LJ, Eding E, Leguen I, Prunet P, Geurden I, Ozório ROA, Schrama JW. Hypoxia, but not an electrolyte-imbalanced diet, reduces feed intake, growth and oxygen consumption in rainbow trout (Oncorhynchus mykiss). Sci Rep 2018; 8:4965. [PMID: 29563578 PMCID: PMC5862884 DOI: 10.1038/s41598-018-23352-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Oxygen limitation and dietary imbalances are key aspects influencing feed intake (FI) and growth performance in cultured fish. This study investigated the combined effects of hypoxia and dietary electrolyte balance on the growth performance, body composition and nutrient utilization in a rainbow trout (Oncorhynchus mykiss) isogenic line. Fish were fed ad libitum two experimental diets: electrolyte-balanced or -imbalanced diets (DEB 200 or 700 mEq kg−1, respectively) and exposed to normoxia or hypoxia (7.9 or 4.5 mg O2 l−1, respectively) for 42 days. DEB did not affect FI, growth performance or body composition. Nevertheless, hypoxia had a negative impact, reducing FI (6%), growth rate (8%), oxygen consumption (19%), energy (5%) and lipid (42%) contents. Digestible energy intake and heat production were higher in normoxic fish (40% and 23%, respectively), retaining 64% more energy in lipid or protein. Hypoxia reduced the apparent digestibility of dry matter, ash, protein, lipid, carbohydrates and energy. Trout fed DEB 700 diet were energetically less efficient, reflected in higher heat production and energy requirements for maintenance. FI was inhibited by low dissolved oxygen levels, but not by electrolyte-imbalanced diet, in spite of the higher energy requirements for maintenance. This study highlights the importance that dietary-electrolyte content and DO levels have on energy balance and growth performance when fish are fed to satiation.
Collapse
Affiliation(s)
- Leonardo J Magnoni
- CIIMAR, University of Porto, Matosinhos, 4450-208, Portugal.,IIB-INTECH, CONICET-UNSAM, Chascomús, 7310, Argentina
| | - Ep Eding
- AFI, WIAS, Wageningen University, Wageningen, 6700 AH, The Netherlands
| | | | | | | | - Rodrigo O A Ozório
- CIIMAR, University of Porto, Matosinhos, 4450-208, Portugal.,ICBAS, University of Porto, Porto, 4050-313, Portugal
| | - Johan W Schrama
- AFI, WIAS, Wageningen University, Wageningen, 6700 AH, The Netherlands.
| |
Collapse
|
7
|
Lei XJ, Chung JY, Park JH, Kim IH. Evaluation of different dietary electrolyte balance in weanling pigs diets. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius). Comp Biochem Physiol B Biochem Mol Biol 2017; 211:8-15. [PMID: 28323073 DOI: 10.1016/j.cbpb.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/30/2022]
Abstract
Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na2CO3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na+ and K+ concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance.
Collapse
|