1
|
Franzolin AML, Fioretto MN, Ribeiro IT, Maciel FA, Barata LA, Vitali PM, Magosso N, Fagundes FL, Emílio-Silva MT, Hiruma Lima CA, Scarano WR, Justulin LA. Maternal protein restriction compromises hepatic phenotype and antioxidant defense in postweaning male rats, while females exhibit resilience. Biochem Biophys Res Commun 2025; 766:151873. [PMID: 40300334 DOI: 10.1016/j.bbrc.2025.151873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept postulates that maternal malnutrition can program offspring for dysfunction of multiple systems, including the liver. Maternal Protein Restriction (MPR) is a maternal malnutrition model that dysregulates catabolic hormones early in life, with long-term consequences on offspring such as hypertension and reproductive system cancers. Furthermore, studies evaluating sex-specific differences are scarce, especially considering the consequences of MPR on early life. Here, we investigated the impacts of MPR on hepatic phenotypic and molecular aspects of male and female rats at postnatal day (PND)21. The rats were divided into two groups: CTR, from dams that consumed a normal-protein diet (17 % protein), or GLLP, from dams that consumed a low-protein diet (6 % protein) throughout gestation and lactation. Our results demonstrated that MPR leads to an increase in collagen fibers, glycogen, and peroxiredoxin 1, in addition to a decrease in reticular fibers, mast cells, GSH, and MDA in the liver of male rats. In females, a reduction of reticular fibers and protein expression of hepatic peroxiredoxin 4 was observed. By contrasting these results with in silico analyses, we suggest that the main altered mechanisms in males are associated with oxidative stress, glycogen metabolism, and inflammatory responses. In females, a subtle dysregulation of antioxidant activity within the extracellular matrix was noted. Therefore, this work demonstrates sex-specific hepatic differences in post-weaning rats exposed to MPR, highlighting possible maternal modulations that lead males to be more affected, which may generate long-term effects on hepatic and systemic health.
Collapse
Affiliation(s)
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Flávia Alessandra Maciel
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Luisa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Pedro Menchini Vitali
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Natália Magosso
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Felipe Leonardo Fagundes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Clélia Akiko Hiruma Lima
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
2
|
de Almeida AM, Latorre MA, Alvarez-Rodriguez J. Productive, Physiological, and Environmental Implications of Reducing Crude Protein Content in Swine Diets: A Review. Animals (Basel) 2024; 14:3081. [PMID: 39518804 PMCID: PMC11544889 DOI: 10.3390/ani14213081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Pig production is one of the most important providers of high-quality proteins and amino acids (AAs) to human nutrition. In this sector, feeding has an important economic and environmental impact. A strategy to reduce production costs and negative sustainability effects is reducing dietary crude protein (CP) contents with or without AA supplementation. This review addresses the different aspects related to this strategy, particularly the effects on growth performance and pork traits in piglets and growing and finishing pigs, as well as the physiological molecular mechanisms' underlying effects. Insight is also provided into the effects of dietary CP reduction on the productive performances of alternative pig production systems and breeding boars and sows. Finally, an overview is conducted on the effects of dietary CP reduction on ammonia, odor, and greenhouse gas emissions arising from pig production systems. Overall, CP reduction may lead to production losses, albeit they can be, to some extent, hindered by adequate AA supplementation. Losses are particularly relevant during the post-weaning phase, whereas in finishing pigs, it may bring additional benefits, such as high intramuscular fat contents in some markets or improved gut barrier function with benefits to the animals' health and welfare, as well as decreased ammonia emissions to the environment.
Collapse
Affiliation(s)
- André Martinho de Almeida
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Angeles Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-Universidad de Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain;
| | - Javier Alvarez-Rodriguez
- Departamento de Ciencia Animal, Universidad de Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
3
|
Dukhnitsky VB, Derkach IM, Plutenko MO, Fritsky IO, Derkach SS. Antianemic action of the iron (IV) clathrochelate complexes. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Anemia is one of the most common non-contagious diseases of pigs. Modern antianemic drugs have several drawbacks, so finding new drugs is a pressing issue. We previously reported the results of preclinical studies of iron in rare high valence IV. This allowed us to determine, supplement, and generalize the data on clinical studies of the new drugs with the active substance iron (IV) clathrochelate. Therefore, we studied its antianemic effect on piglets. Experiments were carried out on piglets-analogues neonates, which were divided into three groups: control and two experimental groups. Piglets were kept with sows on suckling. For the purpose of prevention of iron deficiency anemia, the traditional solution of iron dextran was administered once intramuscularly to piglets of I control group. The aqueous solution of iron (IV) clathrochelate complexes was administered once intramuscularly to piglets of II experimental group. Iron (IV) clathrochelate complexes were dissolved in a solvent of rheopolyglucin and administered once intramuscularly to piglets of III experimental group. 1 mL of test solutions contained 100 mg of active substance. The investigative material were the samples of blood and serum of piglets, their liver and spleen. The experiment lasted during a 30-day period since the birth of the piglets. According to the results of the experiments, iron (IV) clatrochelate complexes which were dissolved in water for injection and rheopolyglucin had higher antianemic activity compared to the control. This is evidenced by the dynamics of probable changes in the number of erythrocytes, hemoglobin content and hematocrit, iron content in serum and its mass fraction in the blood, liver and spleen of piglets. The effectiveness of the action of iron (IV) clatrochelate complexes is demonstrated by the full supply of piglets with iron and its higher bioavailability.
Collapse
|