1
|
Zhong C, Deng K, Lang X, Shan D, Xie Y, Pan W, Yu J. Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update. Pharmacol Ther 2025; 271:108864. [PMID: 40274196 DOI: 10.1016/j.pharmthera.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Liu L, Barber E, Kellow NJ, Williamson G. Improving quercetin bioavailability: A systematic review and meta-analysis of human intervention studies. Food Chem 2025; 477:143630. [PMID: 40037045 DOI: 10.1016/j.foodchem.2025.143630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
This systematic review evaluated a total of 31 included human intervention studies that have assessed methods to improve quercetin bioavailability from different formulations and food matrices using urine or blood samples up to July 2024. The bioavailability of quercetin in humans was affected by several factors. 1) Chemical structure: Quercetin-3-O-oligoglucosides exhibited 2-fold higher bioavailability than quercetin-3-O-glucoside, 10-fold higher than quercetin-3-O-rutinoside and ∼ 20-fold higher than quercetin aglycone. 2) Modification of physicochemical properties: In comparison to quercetin aglycone, the quercetin-3-O-glucoside-γ-cyclodextrin inclusion complex showed a 10.8-fold increase in bioavailability, while the self-emulsifying fenugreek galactomannans and lecithin encapsulation, and lecithin phytosome, showed a 62- and 20.1-fold increase, respectively. 3) Food matrix effects: the addition of dietary fats and fibre increased bioavailability by ∼2-fold. This review summarises key factors that enhance quercetin bioavailability, contributing to the development of more effective and practical quercetin supplements or functional foods for better bioactivity of quercetin in humans.
Collapse
Affiliation(s)
- Lu Liu
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Elizabeth Barber
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia.
| |
Collapse
|
3
|
Ahmed ZSO, Khan E, Elias N, Elshebiny A, Dou Q. Updated Review on Natural Polyphenols: Molecular Mechanisms, Biological Effects, and Clinical Applications for Cancer Management. Biomolecules 2025; 15:629. [PMID: 40427522 PMCID: PMC12108987 DOI: 10.3390/biom15050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Polyphenols, naturally occurring compounds found exclusively in plants, have gained significant attention for their potential in cancer prevention and treatment. These compounds are known for their antioxidant properties and are abundant in various plant-based foods, such as vegetables, fruits, grains, and beverages. Recent studies have highlighted the broad spectrum of health benefits of polyphenols, including their antiviral, anti-inflammatory, and anticancer properties. In addition, these naturally derived compounds are increasingly important for drug discovery due to their high molecular diversity and novel biofunctionalities. This review provides an in-depth analysis of the current research and knowledge on the potential use of dietary polyphenols as bioactive compounds for the prevention and treatment of various cancers. This review aims to provide valuable insights into the mechanisms underlying the anticancer properties of phenolic compounds in both laboratory and clinical settings. Furthermore, this review highlights the positive clinical outcomes associated with the use of polyphenols as anticancer agents and offers guidance for future research to advance this promising field.
Collapse
Affiliation(s)
- Zainab Sabry Othman Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
| | - Elyas Khan
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| | - Nathan Elias
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| | - Alhussein Elshebiny
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| | - Qingping Dou
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| |
Collapse
|
4
|
Aonsri C, Kuljarusnont S, Tungmunnithum D. Discovering Skin Anti-Aging Potentials of the Most Abundant Flavone Phytochemical Compound Reported in Siam Violet Pearl, a Medicinal Plant from Thailand by In Silico and In Vitro Assessments. Antioxidants (Basel) 2025; 14:272. [PMID: 40227229 PMCID: PMC11939551 DOI: 10.3390/antiox14030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Currently, nutraceuticals and functional food/cosmeceutical sectors are seeking natural molecules to develop various types of phytopharmaceutical products. Flavonoids have been reported in antioxidant and many medical/pharmacological activities. Monochoria angustifolia or Siam violet pearl medicinal plant is the newest species of the genus Monochoria C. Presl, which have long been consumed as food and herbal medicines. Though previous work showed that apigenin-7-O-glucoside is the most abundant antioxidant phytochemical found in this medicinal plant, the report on anti-aging activity is still lacking and needs to be filled in. The objective of this work is to explore anti-aging capacities of the most abundant antioxidant phytochemical reported in this plant using both in silico and in vitro assessments. In addition, pharmacokinetic properties were predicted. Interestingly, the results from both in silico and in vitro analysis showed a similar trend that apigenin-7-O-glucoside is a potential anti-aging agent against three enzymes. The pharmacokinetic properties, such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), of this compound are also provided in this work. The current study is also the first report on anti-aging properties of this Thai medicinal plant. However, the safety and efficacy of future developed products from this compound and clinical study should be determined in the future.
Collapse
Affiliation(s)
- Chaiyawat Aonsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
- Unit of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| |
Collapse
|
5
|
Mkhize SA, Nthlane RA, Xhakaza SP, Verhaert PD, Baijnath S, Millen AME, Michel FS. Decreased blood pressure with acute administration of quercetin in L-NAME-induced hypertensive rats. Basic Clin Pharmacol Toxicol 2025; 136:e14113. [PMID: 39702745 PMCID: PMC11659105 DOI: 10.1111/bcpt.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Quercetin is known to reduce blood pressure (BP); however, its acute effects are unclear. We investigated the acute effects of quercetin on BP, aortic mechanical properties and vascular reactivity in female Sprague-Dawley (SD) rats. Hypertension was induced using L-NAME (40 mg/kg/day). Quercetin (4.5 mg/kg) was administered intravenously. Mechanical properties of the aortae were measured by echo-tracking in normotensive and hypertensive rats. L-NAME and quercetin quantities in the aorta were determined using AP-MALDI-MSI. Vascular reactivity was performed in mesenteric and renal arteries. L-NAME increased BP and PWVβ while decreasing strain. Quercetin decreased BP and ameliorated PWVβ in L-NAME-induced hypertensive rats. Ex vivo, the acetylcholine (ACh)-induced increase in tension at 100 μM was reduced in renal arteries when exposed to quercetin while phenylephrine (Phe)-induced contractile response was augmented. In quiescent rings of renal arteries incubated with L-NAME (10 μM) and TRAM-34 (1 μM), the ACh-induced vasoconstrictions were inhibited by quercetin. Quercetin resulted in concentration-dependent vasodilation in mesenteric arteries and increased its sensitivity to ACh-induced relaxations. Quercetin lowered BP in L-NAME-induced hypertensive rats, likely due to changes in aortic mechanical properties and relaxation of resistance arteries. Further research is warranted to clarify the acute effects of quercetin on renal arteries in this hypertensive model.
Collapse
Affiliation(s)
- Siluleko A. Mkhize
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Refentshe A. Nthlane
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Sanelisiwe P. Xhakaza
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Peter D. Verhaert
- ProteoFormiX BVVorselaarBelgium
- Department of Imaging and Pathology, Faculty of MedicineKatholieke Universiteit LeuvenBelgium
| | - Sooraj Baijnath
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Aletta M. E. Millen
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Frederic S. Michel
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
6
|
Kuljarusnont S, Iwakami S, Iwashina T, Tungmunnithum D. Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View. Molecules 2024; 29:5351. [PMID: 39598740 PMCID: PMC11596516 DOI: 10.3390/molecules29225351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Flavonoids and other phenolic constituents are a large group of plant metabolites that have long attracted interest from researchers worldwide due to their functions in plant physiology, as well as their huge number of benefits for human health and well-being. This review attempts to reveal a promising view of the major physiological roles of flavonoids and other phenolic phytochemical molecules, e.g., protection agents against UV damage, pathogen defense agents, detoxifying agents, and agents promoting pollen fertility and successful pollination. Besides, the value of both flavonoids and other phenolic phytochemicals for plant species delimitation was also emphasized for the first time with the determination of their major physiological roles. Furthermore, their medical benefits for mankind were also highlighted in this current work.
Collapse
Affiliation(s)
- Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Satoshi Iwakami
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan;
| | - Tsukasa Iwashina
- Department of Botany, National Museum of Nature and Science (TNS), Tsukuba 305-0005, Ibaraki, Japan;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 45000 Orléans, France
| |
Collapse
|
7
|
Zhan YF, Meng ZH, Yan CH, Tan M, Khurshid M, Li YJ, Zheng SJ, Wang J. A novel cascade catalysis for one-pot enzymatically modified isoquercitrin (EMIQ) conversion from rutin and sucrose using rationally designed gradient temperature control. Food Chem 2024; 457:140163. [PMID: 38924912 DOI: 10.1016/j.foodchem.2024.140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ. In this study, a natural cascade catalytic reaction system was constructed with α-L-rhamnosidase and amylosucrase using the inexpensive substrates rutin and sucrose. Additionally, a novel approach integrating gradient temperature regulation into biological cascade reactions was implemented. Under the optimal conditions, the rutin conversion reached a remarkable 95.39% at 24 h. Meanwhile, the productivity of quercetin-3-O-tetraglucoside with the best bioavailability reached an impressive 41.69%. This study presents promising prospects for future mass production of EMIQ directly prepared from rutin and sucrose.
Collapse
Affiliation(s)
- Yu-Fan Zhan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhuo-Hao Meng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Cheng-Hai Yan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Min Tan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yi-Jiangcheng Li
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Shao-Jun Zheng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
8
|
Mansour H, Slika H, Nasser SA, Pintus G, Khachab M, Sahebkar A, Eid AH. Flavonoids, gut microbiota and cardiovascular disease: Dynamics and interplay. Pharmacol Res 2024; 209:107452. [PMID: 39383791 DOI: 10.1016/j.phrs.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of global morbidity and mortality. Extensive efforts have been invested to explicate mechanisms implicated in the onset and progression of CVD. Besides the usual suspects as risk factors (obesity, diabetes, and others), the gut microbiome has emerged as a prominent and essential factor in the pathogenesis of CVD. With its endocrine-like effects, the microbiome modulates many physiologic processes. As such, it is not surprising that dysbiosis-by generating metabolites, inciting inflammation, and altering secondary bile acid signaling- could predispose to or aggravate CVD. Nevertheless, various natural and synthetic compounds have been shown to modulate the microbiome. Prime among these molecules are flavonoids, which are natural polyphenols mainly present in fruits and vegetables. Accumulating evidence supports the potential of flavonoids in attenuating the development of CVD. The ascribed mechanisms of these compounds appear to involve mitigation of inflammation, alteration of the microbiome composition, enhancement of barrier integrity, induction of reverse cholesterol transport, and activation of farnesoid X receptor signaling. In this review, we critically appraise the methods by which the gut microbiome, despite being essential to the human body, predisposes to CVD. Moreover, we dissect the mechanisms and pathways underlying the cardioprotective effects of flavonoids.
Collapse
Affiliation(s)
- Hadi Mansour
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Maha Khachab
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Liu L, Wang F, Zhang Z, Fan B, Luo Y, Li L, Zhang Y, Yan Z, Kong Z, Francis F, Li M. Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124034. [PMID: 38663507 DOI: 10.1016/j.envpol.2024.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L-1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life.
Collapse
Affiliation(s)
- Lulu Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Ying Luo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yifan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhihui Yan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Minmin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
10
|
Niu T, Huang C, Wang R, Yang L, Zhao S, Wang Z. Combinatorial metabolic engineering of Bacillus subtilis enables the efficient biosynthesis of isoquercitrin from quercetin. Microb Cell Fact 2024; 23:114. [PMID: 38641799 PMCID: PMC11031953 DOI: 10.1186/s12934-024-02390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Isoquercitrin (quercetin-3-O-β-D-glucopyranoside) has exhibited promising therapeutic potentials as cardioprotective, anti-diabetic, anti-cancer, and anti-viral agents. However, its structural complexity and limited natural abundance make both bulk chemical synthesis and extraction from medical plants difficult. Microbial biotransformation through heterologous expression of glycosyltransferases offers a safe and sustainable route for its production. Despite several attempts reported in microbial hosts, the current production levels of isoquercitrin still lag behind industrial standards. RESULTS Herein, the heterologous expression of glycosyltransferase UGT78D2 gene in Bacillus subtilis 168 and reconstruction of UDP-glucose (UDP-Glc) synthesis pathway led to the synthesis of isoquercitrin from quercetin with titers of 0.37 g/L and 0.42 g/L, respectively. Subsequently, the quercetin catabolism blocked by disruption of a quercetin dioxygenase, three ring-cleavage dioxygenases, and seven oxidoreductases increased the isoquercitrin titer to 1.64 g/L. And the hydrolysis of isoquercitrin was eliminated by three β-glucosidase genes disruption, thereby affording 3.58 g/L isoquercitrin. Furthermore, UDP-Glc pool boosted by pgi (encoding glucose-6-phosphate isomerase) disruption increased the isoquercitrin titer to 10.6 g/L with the yield on quercetin of 72% and to 35.6 g/L with the yield on quercetin of 77.2% in a 1.3-L fermentor. CONCLUSION The engineered B. subtilis strain developed here holds great potential for initiating the sustainable and large-scale industrial production of isoquercitrin. The strategies proposed in this study provides a reference to improve the production of other flavonoid glycosides by engineered B. subtilis cell factories.
Collapse
Affiliation(s)
- Tengfei Niu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chaokang Huang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rufeng Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shujuan Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Wang H, Zhao M, Zhen Wu Z, Qin N, Fu Y, Guo S. Nutrient composition and functional constituents of daylily from different producing areas based on widely targeted metabolomics. Food Chem X 2024; 21:101239. [PMID: 38420502 PMCID: PMC10900758 DOI: 10.1016/j.fochx.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
Daylily is a functional food with high nutritional value in China. Datong (DT) in Shanxi Province is one of the four main production areas of daylily. Therefore, Linfen (LF), Lvliang (LL), and Yangquan (YQ) in Shanxi Province have also introduced daylily from DT. However, geographical and climatic conditions and producing patterns cause variations in the daylily quality. In the present study, we found that the nutrient composition of daylilies from different producing areas of Shanxi Province varied. The key environmental factors affecting the nutrition of daylily in different regions were altitude and temperature. The widely targeted metabolomics results showed that 1642 metabolites were found in daylily. The differential metabolites between DT and YQ, LL and LF were 557, 667, and 359, respectively. Notably, 9 metabolic pathways and 59 metabolite markers were associated with daylily from different areas. This study provides a theoretical basis for the quality maintenance and health efficacy research of daylily.
Collapse
Affiliation(s)
- Haizhen Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Mengying Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Zhen Zhen Wu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Nannan Qin
- Department of Development Planning and Cooperation, Shanxi Agricultural University, Taiyuan, China
| | - Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Shang Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Wang T, Lv L, Feng H, Gu W. Unlocking the Potential: Quercetin and Its Natural Derivatives as Promising Therapeutics for Sepsis. Biomedicines 2024; 12:444. [PMID: 38398046 PMCID: PMC10887054 DOI: 10.3390/biomedicines12020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Sepsis is a syndrome of organ dysfunction caused by an uncontrolled inflammatory response, which can seriously endanger life. Currently, there is still a shortage of specific therapeutic drugs. Quercetin and its natural derivatives have received a lot of attention recently for their potential in treating sepsis. Here, we provide a comprehensive summary of the recent research progress on quercetin and its derivatives, with a focus on their specific mechanisms of antioxidation and anti-inflammation. To obtain the necessary information, we conducted a search in the PubMed, Web of Science, EBSCO, and Cochrane library databases using the keywords sepsis, anti-inflammatory, antioxidant, anti-infection, quercetin, and its natural derivatives to identify relevant research from 6315 articles published in the last five years. At present, quercetin and its 11 derivatives have been intensively studied. They primarily exert their antioxidation and anti-inflammation effects through the PI3K/AKT/NF-κB, Nrf2/ARE, and MAPK pathways. The feasibility of these compounds in experimental models and clinical application were also discussed. In conclusion, quercetin and its natural derivatives have good application potential in the treatment of sepsis.
Collapse
Affiliation(s)
- Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Linxi Lv
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Hui Feng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
13
|
Farag S, Tsang C, Al-Dujaili EAS, Murphy PN. Effect of Polyphenol Supplementation on Memory Functioning in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:474. [PMID: 38398799 PMCID: PMC10893550 DOI: 10.3390/nu16040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Negative health consequences of obesity include impaired neuronal functioning and cell death, thus bringing the risk of impaired cognitive functioning. Antioxidant properties of polyphenols offer a possible intervention for overweight people, but evidence for their effectiveness in supporting cognitive functioning is mixed. This review examined evidence from randomized controlled trials concerning the effect of polyphenols on tasks requiring either immediate or delayed retrieval of learned information, respectively, thus controlling for differences in cognitive processes and related neural substrates supporting respective task demands. Searches of the PubMed/Medline, PsycInfo, and Scopus databases identified 24 relevant primary studies with N = 2336 participants having a BMI ≥ 25.0 kg/m2. The participants' mean age for the 24 studies exceeded 60 years. Respective meta-analyses produced a significant summary effect for immediate retrieval but not for delayed retrieval. The present findings support a potential positive effect of chronic supplementation with polyphenols, most notably flavonoids, on immediate retrieval in participants aged over 60 years with obesity being a risk factor for cognitive impairment. We recommend further investigation of this potential positive effect in participants with such risk factors. Future research on all populations should report the phenolic content of the supplementation administered and be specific regarding the cognitive processes tested.
Collapse
Affiliation(s)
- Sara Farag
- Department of Psychology, Edge Hill University, Ormskirk L39 4QP, UK; (S.F.); (P.N.M.)
| | - Catherine Tsang
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Emad A. S. Al-Dujaili
- Centre for Cardiovascular Science, Faculty of Medicine and Veterinary Medicine, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Philip N. Murphy
- Department of Psychology, Edge Hill University, Ormskirk L39 4QP, UK; (S.F.); (P.N.M.)
| |
Collapse
|
14
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates. Crit Rev Food Sci Nutr 2024; 65:1669-1705. [PMID: 38189312 DOI: 10.1080/10408398.2023.2299329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3-O-glucuronide (Q3G) and 3'-methylquercetin-3-O-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'-O-sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
15
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
16
|
Farag S, Tsang C, Murphy PN. Polyphenol supplementation and executive functioning in overweight and obese adults at risk of cognitive impairment: A systematic review and meta-analysis. PLoS One 2023; 18:e0286143. [PMID: 37228106 DOI: 10.1371/journal.pone.0286143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Increasing evidence indicates a link between obesity and cognitive impairment. Furthermore, there is limited literature regarding the effect of polyphenols, a plant derived compounds, on executive functioning in an overweight/obese population at-risk of cognitive impairment. The aim of the present systematic review and meta-analysis of randomized controlled trials is to examine the effect of polyphenol supplementation on executive functions in overweight and/or obese populations at risk of cognitive impairment. METHODS A comprehensive literature search was conducted from inception to March 2023 using four electronic databases: PubMed/Medline, PsycInfo, Scopus and Cochrane trials library. Published primary research studies in English that compared the effect of polyphenols with placebo on executive function in overweight/obese adults were considered eligible for the meta-analysis. Jadad scale was used for the methodological quality rating of the included studies. Hedges g with 95% confidence intervals (CI) for endpoints were calculated using random effect model where applicable. Rosenthal's Fail-safe N, funnel plots, the Begg and Mazumdar's rank correlation test (Kendall's S statistic P-Q), Egger's linear regression test, and Duval and Tweedie's trim-and-fill test were identified for potential use as appropriate, to examine publication bias. Sensitivity analysis was conducted to examine the robustness of the results. RESULTS AND CONCLUSION A total of 23 RCT studies involving N = 1,976 participants were included in the review. The results of the meta-analysis revealed a non-significant effect for polyphenol supplementation on executive function (g = 0.076, CI = -0.018 to 0.170). Observations from primary studies within the meta-analysis showed a potential positive effect of polyphenol supplementation in a younger population at-risk of cognitive impairment and it is recommended to investigate this further in future studies. Moreover, the variability of the tasks used to examine executive functions as well as the adequate reporting of supplement's phenolic composition is a limitation that future work should also consider.
Collapse
Affiliation(s)
- Sara Farag
- Department of Psychology, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Catherine Tsang
- Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| | - Philip N Murphy
- Department of Psychology, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| |
Collapse
|
17
|
Bagheri A, Radman G, Aria N, Rezaei F, Khajenouri M, Ghiabi S, Bagheri Y. The Effects of Quercetin on Apoptosis and Antioxidant Activity in a Renal Ischemia/Reperfusion Injury Animal Model. Drug Res (Stuttg) 2023. [PMID: 36972618 DOI: 10.1055/a-1999-7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is considered as one of the most prevalent causes of acute kidney injury (AKI), which can happen in various clinical situations including hypovolemic shock, injury, thrombo-embolism, and after a kidney transplant. This paper aims to evaluate the reno-protective effects of Quercetin in induced ischemia/reperfusion injury by regulating apoptosis-related proteins, inflammatory cytokines, MMP-2, MMP-9, and nuclear factor kappa-light-chain-enhancer inactivated B cells (NF-kB) in rats. The male Wistar rats (n=32) were randomly divided into Sham, untreated IR, and Quercetin-treated IR (gavage and intraperitoneal). Quercetin was given orally and intraperitoneally one hour before inducing ischemia-reperfusion injury . After reperfusion, blood samples and kidneys were collected to assess renal function and inflammatory cytokines, apoptotic signaling proteins, and antioxidants. Urea, creatinine, and MDA levels improved in Quercetin-treated groups with different administration methods. In addition, the activities of other antioxidant in Quercetin-treated rats were higher than those in the IR group. Further, Quercetin inhibited NF-kB signaling, apoptosis-associated factors and produced matrix metalloproteinase protein in the kidneys of rats. Based on the findings, the antioxidant, anti-inflammatory, and anti-apoptotic effects of the Quercetin diminished renal ischemia-reperfusion injury in the rats significantly. It is suggested that a single dosage of Quercetin have a reno-protective impact in the case of renal I/R injury.
Collapse
Affiliation(s)
- Amin Bagheri
- Department of Urology, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Radman
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Negar Aria
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rezaei
- Faculty of Pharmacy in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Mohammad Khajenouri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Potential Role of Quercetin Glycosides as Anti-Atherosclerotic Food-Derived Factors for Human Health. Antioxidants (Basel) 2023; 12:antiox12020258. [PMID: 36829817 PMCID: PMC9952755 DOI: 10.3390/antiox12020258] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Quercetin is a monomeric polyphenol of plant origin that belongs to the flavonol-type flavonoid subclass. Extensive studies using cultured cells and experimental model animals have demonstrated the anti-atherosclerotic effects of dietary quercetin in relation to the prevention of cardiovascular disease (CVD). As quercetin is exclusively present in plant-based foods in the form of glycosides, this review focuses on the bioavailability and bioefficacy of quercetin glycosides in relation to vascular health effects. Some glucose-bound glycosides are absorbed from the small intestine after glucuronide/sulfate conjugation. Both conjugated metabolites and deconjugated quercetin aglycones formed by plasma β-glucuronidase activity act as food-derived anti-atherogenic factors by exerting antioxidant, anti-inflammatory, and plasma low-density lipoprotein cholesterol-lowering effects. However, most quercetin glycosides reach the large intestine, where they are subject to gut microbiota-dependent catabolism resulting in deglycosylated aglycone and chain-scission products. These catabolites also affect vascular health after transfer into the circulation. Furthermore, quercetin glycosides may improve gut microbiota profiles. A variety of human cohort studies and intervention studies support the idea that the intake of quercetin glycoside-rich plant foods such as onion helps to prevent CVD. Thus, quercetin glycoside-rich foods offer potential benefits in terms of cardiovascular health and possible clinical applications.
Collapse
|
19
|
Isoquercitrin Induces Endoplasmic Reticulum Stress and Immunogenic Cell Death in Gastric Cancer Cells. Biochem Genet 2022; 61:1128-1142. [DOI: 10.1007/s10528-022-10309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
|
20
|
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int J Mol Sci 2022; 23:14784. [PMID: 36499113 PMCID: PMC9738368 DOI: 10.3390/ijms232314784] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Quercetin and its glycosides, such as isoquercitrin or rutin, are among the most ubiquitous flavonoids present in plants. They possess numerous health-promoting properties, whose applicability is, however, limited by poor water solubility and absorption issues. Enzymatically modified isoquercitrin (EMIQ) is an isoquercitrin derivative obtained from rutin via enzymatic transformations that greatly enhance its bioavailability. Due to advantageous reports on its safety and bioactivity, EMIQ is currently gaining importance as a food additive and a constituent of dietary supplements. This review summarizes the thus-far-conducted investigations into the metabolism, toxicity, biological properties, and molecular mechanisms of EMIQ and presents a comprehensive characterization of this valuable substance, which might represent the future of flavonoid supplementation.
Collapse
Affiliation(s)
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
21
|
Huang H, Zhao Y. Effect of clove on improving running ability in aging mice. J Food Biochem 2022; 46:e14339. [DOI: 10.1111/jfbc.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Haifeng Huang
- Department of Physical Education South China Agricultural University Guangzhou China
| | - Yan Zhao
- Department of Physical Education South China Agricultural University Guangzhou China
| |
Collapse
|
22
|
Malheiros J, Simões DM, Antunes PE, Figueirinha A, Cotrim MD, Fonseca DA. Vascular Effects of Polyphenols from Agrimonia eupatoria L. and Role of Isoquercitrin in Its Vasorelaxant Potential in Human Arteries. Pharmaceuticals (Basel) 2022; 15:ph15050638. [PMID: 35631463 PMCID: PMC9143967 DOI: 10.3390/ph15050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Agrimonia eupatoria L. has been traditionally used for the treatment of inflammatory diseases but also as a hypotensive. To our knowledge, only one study has previously suggested an improvement in vascular endothelial function in diabetic conditions, as the underlying mechanisms and responsible compounds are unknown. In this study, we aimed to assess the direct vascular effects of Agrimonia eupatoria L. in human arteries. The infusion elicited a mild increase in basal vascular tone and a significant potentiation of the adrenergic contraction of 49.18% at 0.02 mg/mL, suggesting the presence of compounds with mild vasoconstrictor activity. In contrast, the ethyl acetate fraction inhibited adrenergic contraction by 80.65% at 2 mg/mL and elicited no effect on basal vascular tone. A potent concentration-dependent vasorelaxation was observed for both the infusion and the ethyl acetate fraction (maximal relaxation above 76% and 47%, respectively). Inhibition of nitric oxide synthase and cyclooxygenase elicited significant decreases in the vasorelaxation to the infusion, as, for the ethyl acetate fraction, only the cyclooxygenase pathway appeared to be involved. Isoquercitrin elicited a vasoactivity consistent with the ethyl acetate fraction, suggesting this is a major component responsible for the vasorelaxant properties of A. eupatoria. Further research is warranted to fully evaluate its vasoprotective properties with therapeutic potential in several conditions, e.g., atherosclerosis.
Collapse
Affiliation(s)
- Jéssica Malheiros
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela M. Simões
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Pedro E. Antunes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Centre of Cardiothoracic Surgery, University Hospital and Faculty of Medicine of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, CACC, 3000-075 Coimbra, Portugal
| | - Artur Figueirinha
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
- Correspondence: (A.F.); (D.A.F.); Tel.: +35-12-3948-8400 (D.A.F.)
| | - Maria Dulce Cotrim
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diogo A. Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.F.); (D.A.F.); Tel.: +35-12-3948-8400 (D.A.F.)
| |
Collapse
|
23
|
Kozłowska A, Szostak-Węgierek D. Targeting Cardiovascular Diseases by Flavonols: An Update. Nutrients 2022; 14:1439. [PMID: 35406050 PMCID: PMC9003055 DOI: 10.3390/nu14071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Flavonols are one of the most plentiful flavonoid subclasses found in natural products and are extensively used as dietary supplements. Numerous in vitro and in vivo studies have shown the cardioprotective properties of flavonols, especially quercetin. This group of substances exerts positive impacts primarily due to their antiatherogenic, antithrombotic, and antioxidant activities. The potential of flavonols to promote vasodilation and regulation of apoptotic processes in the endothelium are other beneficial effects on the cardiovascular system. Despite promising experimental findings, randomized controlled trials and meta-analyses have yielded inconsistent results on the influence of these substances on human cardiovascular parameters. Thus, this review aims to summarize the most recent clinical data on the intake of these substances and their effects on the cardiovascular system. The present study will help clinicians and other healthcare workers understand the value of flavonol supplementation in both subjects at risk for cardiovascular disease and patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Aleksandra Kozłowska
- Department of Social Medicine and Public Health, Medical University of Warsaw, Oczki Str. 3, 02-007 Warsaw, Poland;
| | - Dorota Szostak-Węgierek
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka Str. 27, 01-445 Warsaw, Poland
| |
Collapse
|
24
|
Anusha Siddiqui S, Redha AA, Esmaeili Y, Mehdizadeh M. Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Crit Rev Food Sci Nutr 2022; 63:5937-5952. [PMID: 35021911 DOI: 10.1080/10408398.2022.2026290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Elderberry (Sambucus nigra L.) has been used in traditional medicine and as a supplement in many beverages and meals. Elderberry is a good source of bioactive flavonoids like quercetin, kaempferol, and rutin, as well as other phenolic compounds. Extraction techniques significantly influence the efficiency of extraction of bioactive compounds. Green chemistry elements such as safety, environmental friendliness, run-down or at least minimal contaminants, efficiency, and economic criteria should all be addressed by an effective bioactive extraction process. Furthermore, micro/nanoencapsulation technologies are particularly effective for increasing bioavailability and bioactive component stability. SCOPE AND APPROACH This review article comprehensively describes new developments in elderberry extraction and encapsulation. Elderberry is largely employed in the food and pharmaceutical industries due to its health-promoting and sensory characteristics. Elderberry has traditionally been used as a diaphoretic, antipyretic, diuretic, antidepressant, and antitumor agent in folk medicine. KEY FINDINGS AND CONCLUSIONS Conventional extraction methods (e.g. maceration and Soxhelt extraction) as well as advanced green techniques (e.g. supercritical fluids, pulsed electric field, emulsion liquid extraction, microwave, and ultrasonic extraction) have been used to extract bioactives from elderberry. Over the other protective measures, encapsulation techniques are particularly recommended to protect the bioactive components found in elderberry. Microencapsulation (spray drying, freeze drying, extrusion, emulsion systems) and nanoencapsulation (nanoemulsions, solid lipid nanoparticles and nanodispersions, nanohydrogels, electrospinning, nano spray drying) approaches for elderberry bioactives have been examined in this regard.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
25
|
Curtis PJ, Berends L, van der Velpen V, Jennings A, Haag L, Chandra P, Kay CD, Rimm EB, Cassidy A. Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: Results from a double blind, randomized controlled trial in metabolic syndrome participants. Clin Nutr 2021; 41:165-176. [PMID: 34883305 PMCID: PMC8757535 DOI: 10.1016/j.clnu.2021.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Background & aims Whilst the cardioprotective effects of blueberry intake have been shown in prospective studies and short-term randomized controlled trials (RCTs), it is unknown whether anthocyanin-rich blueberries can attenuate the postprandial, cardiometabolic dysfunction which follows energy-dense food intakes; especially in at-risk populations. We therefore examined whether adding blueberries to a high-fat/high-sugar meal affected the postprandial cardiometabolic response over 24 h. Methods A parallel, double-blind RCT (n = 45; age 63.4 ± 7.4 years; 64% male; BMI 31.4 ± 3.1 kg/m2) was conducted in participants with metabolic syndrome. After baseline assessments, an energy-dense drink (969 Kcals, 64.5 g fat, 84.5 g carbohydrate, 17.9 g protein) was consumed with either 26 g (freeze-dried) blueberries (equivalent to 1 cup/150 g fresh blueberries) or 26 g isocaloric matched placebo. Repeat blood samples (30, 60, 90, 120, 180, 360 min and 24 h), a 24 h urine collection and vascular measures (at 3, 6, and 24 h) were performed. Insulin and glucose, lipoprotein levels, endothelial function (flow mediated dilatation (FMD)), aortic and systemic arterial stiffness (pulse wave velocity (PWV), Augmentation Index (AIx) respectively), blood pressure (BP), and anthocyanin metabolism (serum and 24 h urine) were assessed. Results Blueberries favorably affected postprandial (0–24 h) concentrations of glucose (p < 0.001), insulin (p < 0.01), total cholesterol (p = 0.04), HDL-C, large HDL particles (L-HDL-P) (both p < 0.01), extra-large HDL particles (XL-HDL-P; p = 0.04) and Apo-A1 (p = 0.01), but not LDL-C, TG, or Apo-B. After a transient higher peak glucose concentration at 1 h after blueberry intake ([8.2 mmol/L, 95%CI: 7.7, 8.8] vs placebo [6.9 mmol/L, 95%CI: 6.4, 7.4]; p = 0.001), blueberries significantly attenuated 3 h glucose ([4.3 mmol/L, 95%CI: 3.8, 4.8] vs placebo [5.1 mmol/L, 95%CI: 4.6, 5.6]; p = 0.03) and insulin concentrations (blueberry: [23.4 pmol/L, 95%CI: 15.4, 31.3] vs placebo [52.9 pmol/L, 95%CI: 41.0, 64.8]; p = 0.0001). Blueberries also improved HDL-C ([1.12 mmol/L, 95%CI: 1.06, 1.19] vs placebo [1.08 mmol/L, 95%CI: 1.02, 1.14]; p = 0.04) at 90 min and XL-HDLP levels ([0.38 × 10-6, 95%CI: 0.35, 0.42] vs placebo [0.35 × 10-6, 95%CI: 0.32, 0.39]; p = 0.02) at 3 h. Likewise, significant improvements were observed 6 h after blueberries for HDL-C ([1.17 mmol/L, 95%CI: 1.11, 1.24] vs placebo [1.10 mmol/L, 95%CI: 1.03, 1.16]; p < 0.001), Apo-A1 ([1.37 mmol/L, 95%CI: 1.32, 1.41] vs placebo [1.31 mmol/L, 95%CI: 1.27, 1.35]; p = 0.003), L-HDLP ([0.70 × 10-6, 95%CI: 0.60, 0.81] vs placebo [0.59 × 10-6, 95%CI: 0.50, 0.68]; p = 0.003) and XL-HDLP ([0.44 × 10-6, 95%CI: 0.40, 0.48] vs placebo [0.40 × 10-6, 95%CI: 0.36, 0.44]; p < 0.001). Similarly, total cholesterol levels were significantly lower 24 h after blueberries ([4.9 mmol/L, 95%CI: 4.6, 5.1] vs placebo [5.0 mmol/L, 95%CI: 4.8, 5.3]; p = 0.04). Conversely, no effects were observed for FMD, PWV, AIx and BP. As anticipated, total anthocyanin-derived phenolic acid metabolite concentrations significantly increased in the 24 h after blueberry intake; especially hippuric acid (6-7-fold serum increase, 10-fold urinary increase). In exploratory analysis, a range of serum/urine metabolites were associated with favorable changes in total cholesterol, HDL-C, XL-HDLP and Apo-A1 (R = 0.43 to 0.50). Conclusions For the first time, in an at-risk population, we show that single-exposure to the equivalent of 1 cup blueberries (provided as freeze-dried powder) attenuates the deleterious postprandial effects of consuming an energy-dense high-fat/high-sugar meal over 24 h; reducing insulinaemia and glucose levels, lowering cholesterol, and improving HDL-C, fractions of HDL-P and Apo-A1. Consequently, intake of anthocyanin-rich blueberries may reduce the acute cardiometabolic burden of energy-dense meals. Clinical trial registry NCT02035592 at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Peter J Curtis
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Lindsey Berends
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Vera van der Velpen
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Amy Jennings
- Institute for Global Food Security, Queen's University Belfast, BT9 5DL, Ireland
| | - Laura Haag
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Preeti Chandra
- Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Colin D Kay
- Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Eric B Rimm
- Departments of Epidemiology & Nutrition, Harvard T.H. Chan School of Public Health, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, BT9 5DL, Ireland.
| |
Collapse
|
26
|
Unusual Bioactive Compounds with Antioxidant Properties in Adjuvant Therapy Supporting Cognition Impairment in Age-Related Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms221910707. [PMID: 34639048 PMCID: PMC8509433 DOI: 10.3390/ijms221910707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Cognitive function decline is strictly related to age, resulting in the loss of the ability to perform daily behaviors and is a fundamental clinical neurodegeneration symptom. It has been proven that an adequate diet, comprehensive nutrition, and a healthy lifestyle may significantly inhibit neurodegenerative processes, improving cognitive functions. Therefore, intensive research has been conducted on cognitive-enhancing treatment for many years, especially with substances of natural origin. There are several intervention programs aimed at improving cognitive functions in elderly adults. Cognitive functions depend on body weight, food consumed daily, the quality of the intestinal microflora, and the supplements used. The effectiveness in the prevention of dementia is particularly high before the onset of the first symptoms. The impact of diet and nutrition on age-associated cognitive decline is becoming a growing field as a vital factor that may be easily modified, and the effects may be observed on an ongoing basis. The paper presents a review of the latest preclinical and clinical studies on the influence of natural antioxidants on cognitive functions, with particular emphasis on neurodegenerative diseases. Nevertheless, despite the promising research results in animal models, the clinical application of natural compounds will only be possible after solving a few challenges.
Collapse
|
27
|
Kapoor MP, Moriwaki M, Uguri K, Timm D, Kuroiwa Y. Bioavailability of dietary isoquercitrin-γ-cyclodextrin molecular inclusion complex in Sprague–Dawley rats and healthy humans. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Manjunath SH, Thimmulappa RK. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19. J Pharm Anal 2021; 12:29-34. [PMID: 34567823 PMCID: PMC8450231 DOI: 10.1016/j.jpha.2021.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a devastating health crisis worldwide. In this review, we have discussed that prophylactic phytochemical quercetin supplementation in the form of foods or nutraceuticals may help manage the COVID-19 pandemic. The following evidence supports our argument. First, nuclear factor erythroid-derived 2-like 2 (NRF2) agonists abrogate replication of SARS-CoV-2 in lung cells, and quercetin is a potent NRF2 agonist. Second, quercetin exerts antiviral activity against several zoonotic coronaviruses, including SARS-CoV-2, mainly by inhibiting the entry of virions into host cells. Third, inflammatory pathways activated by nuclear factor kappa B, inflammasome, and interleukin-6 signals elicit cytokine release syndrome that promotes acute respiratory distress syndrome in patients with COVID-19, and quercetin inhibits these pro-inflammatory signals. Fourth, patients with COVID-19 develop thrombosis, and quercetin mitigates coagulation abnormalities by inhibiting plasma protein disulfide isomerase. This review provides a strong rationale for testing quercetin for the management of COVID-19. Quercetin may inhibit SARS-CoV-2 entry into cells by altering viral envelope proteins. Quercetin may inhibit SARS-CoV-2 replication by activating the NRF2 pathway. Quercetin attenuates proinflammatory signals and cytokine release syndrome. Quercetin may reduce coagulopathy by inhibiting protein disulphide isomerase.
Collapse
Affiliation(s)
- Souparnika H Manjunath
- Department of Biochemistry, Jagadguru Sri Shivarathreeshwara Medical College, Jagadguru Sri Shivarathreeshwara Academy of Higher Education & Research (JSSAHER), Mysore, 570015, India
| | - Rajesh K Thimmulappa
- Department of Biochemistry, Jagadguru Sri Shivarathreeshwara Medical College, Jagadguru Sri Shivarathreeshwara Academy of Higher Education & Research (JSSAHER), Mysore, 570015, India
| |
Collapse
|
29
|
Liu L, Huang S, Xu M, Gong Y, Li D, Wan C, Wu H, Tang Q. Isoquercitrin protects HUVECs against high glucose‑induced apoptosis through regulating p53 proteasomal degradation. Int J Mol Med 2021; 48:122. [PMID: 33982778 PMCID: PMC8121554 DOI: 10.3892/ijmm.2021.4955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
High glucose (HG)-induced endothelial apoptosis serves an important role in the vascular dysfunction associated with diabetes mellitus (DM). It has been reported that isoquercitrin (IQC), a flavonoid glucoside, possesses an anti-DM effect, but the mechanism requires further investigation. The present study investigated the effect of IQC against HG-induced apoptosis in human umbilical vein endothelial cells (HUVECs) and explored its molecular mechanism. HUVECs were treated with 5 or 30 mM glucose for 48 h. Endothelial cell viability was monitored using the Cell Counting Kit-8 assay. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was observed by TUNEL staining and flow cytometry. Western blotting was used for the analysis of apoptosis-associated proteins Bax, Bcl-2, cleaved (C)-caspase3, total-caspase3, p53 and phosphorylated p53. Reverse transcription-quantitative PCR was used to analyze the mRNA expression levels of Bax, Bcl-2 and p53. Immunofluorescence staining was utilized to detect the expression levels and distribution of p53 and ubiquitin specific peptidase 10 (USP10) in HUVECs. The results revealed that IQC significantly attenuated HG-induced endothelial apoptosis, as shown by decreased apoptotic cells observed by TUNEL, JC-1 staining and flow cytometry. Moreover, under HG stress, IQC treatment markedly inhibited the increased expression levels of the pro-apoptotic proteins p53, Bax and C-caspase3, and increased the expression levels of the anti-apoptotic protein Bcl-2 in HUVECs. However, the anti-apoptotic effect of IQC against HG was partially blunted by increasing p53 protein levels in vitro. IQC influenced the mRNA expression levels of Bax and Bcl-2 in response to HG, but it did not affect the transcription of p53. Notably, IQC inhibited the HG-induced phosphorylation of p53 at Ser15 and the nuclear transport of USP10, destabilizing p53 and increasing the proteasomal degradation of the p53 protein. The current findings revealed that IQC exerted a protective effect against the HG-induced apoptosis of endothelial cells by regulating the proteasomal degradation of the p53 protein, suggesting that IQC may be used as a novel therapeutic compound to ameliorate DM-induced vascular complications.
Collapse
Affiliation(s)
- Libo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sihui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Gong
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
30
|
Kao CC, Kung PH, Tai CJ, Tsai MC, Cheng YB, Wu CC. Juglone prevents human platelet aggregation through inhibiting Akt and protein disulfide isomerase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153449. [PMID: 33387969 DOI: 10.1016/j.phymed.2020.153449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND/PURPOSE Juglone, a natural compound widely found in Juglandaceae plants, has been suggested as a potential drug candidate for treating cancer, inflammation, and diabetic vascular complications. In the present study, the antiplatelet effect and underlying mechanisms of juglone were investigated for the first time. STUDY DESIGN/METHODS Human platelet aggregation and activation were measured by turbidimetric aggregometry, flow cytometry, and Western blotting. In vitro antithrombotic activity of juglone was assessed using collagen-coated flow chambers under whole-blood flow conditions. The effect of juglone on protein disulfide isomerase (PDI) activity was determined by the dieosin glutathione disulfide assay. RESULTS Juglone (1 - 5 μM) inhibited platelet aggregation and glycoprotein (GP) IIb/IIIa activation caused by various agonists. In a whole blood flow chamber system, juglone reduced thrombus formation on collagen-coated surfaces under arterial shear rates. Juglone abolished intracellular Ca2+ elevation and protein kinase C activation caused by collagen, but had no significant effect on that induced by G protein-coupled receptor agonists. In contrast, Akt activation caused by various agonists were inhibited in juglone-treated platelets. Additionally, juglone showed inhibitory effects on both recombinant human PDI and platelet surface PDI at concentrations similar to those needed to prevent platelet aggregation. CONCLUSION Juglone exhibits potent in vitro antiplatelet and antithrombotic effects that are associated with inhibition of Akt activation and platelet surface PDI activity.
Collapse
Affiliation(s)
- Ching-Chieh Kao
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Hsiung Kung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Jung Tai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| | - Meng-Chun Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
de Souza P, Mariano LNB, Cechinel-Zanchett CC, Cechinel-Filho V. Promising Medicinal Plants with Diuretic Potential Used in Brazil: State of the Art, Challenges, and Prospects. PLANTA MEDICA 2021; 87:24-37. [PMID: 32957146 DOI: 10.1055/a-1257-0887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Medicinal plants are used in traditional medicine to treat a wide range of ailments. The knowledge of them is handed down from generation to generation and is described in several pharmacopoeia and in the general literature. The immense biodiversity of the Brazilian flora, covering about 25% of all plant species worldwide, makes Brazil a huge potential source of medicinal plants. Indeed, many of these plant species are already used in the Brazilian ethnopharmacology for their probable effect to induce diuresis, to reduce fluid retention, and to treat cardiovascular and renal disorders. This review article describes and discusses the main native Brazilian medicinal plants (including some of their isolated compounds) used as diuretics. It also gives a comprehensive analysis of the most relevant scientific studies presented to date, as well as addressing a special topic with future prospects for plant species that have not yet been scientifically studied. In brief, several plants can be indicated for more detailed study, with a view to obtain scientific subsidies for a new and effective diuretic medicine in the future. These include Bauhinia forficata, Leandra dasytricha, and Tropaeolum majus. Other species have reputed medicinal properties but lack experimental assays to demonstrate their pharmacological effects (e.g., Mikania hirsutissima, Phyllanthus niruri, and Tagetes minuta). Several active principles are indicated as responsible for the diuretic effects of the plants studied, with emphasis on phenolic compounds as flavonoids, phenolic acids, and xanthones. These results should encourage more detailed preclinical, clinical, and phytochemical investigations on Brazilian plants in the future.
Collapse
Affiliation(s)
- Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Luísa Nathália Bolda Mariano
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
- Laboratório de Biologia Cardiovascular, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Camile Cecconi Cechinel-Zanchett
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| |
Collapse
|
32
|
Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021; 13:nu13010273. [PMID: 33477894 PMCID: PMC7833401 DOI: 10.3390/nu13010273] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Polyphenols are a group of phytochemicals with potential health-promoting effects. They are classified as flavonoid (flavonols, flavanols, flavones, flavanones, isoflavones, and anthocyanins) and non-flavonoid molecules (phenolic acids, hydroxycinnamic acids, lignans, stilbenes, and tannins). Although an increasing number of trials have shown a correlation among polyphenol consumption and a reduction in risk factors for chronic diseases, discrepancies in explaining their positive effects have been found in terms of the bioavailability. In fact, polyphenols show a low bioavailability due to several factors: interaction with the food matrix, the metabolic processes mediated by the liver (phase I and II metabolism), intestine and microbiota. On the other hand, the biological activities of phenol compounds may be mediated by their metabolites, which are produced in vivo, and recent studies have confirmed that these molecules may have antioxidant and anti-phlogistic properties. This review discusses the studies performed in vivo, which consider the polyphenol bioavailability and their different food sources. Factors influencing the biological effects of the main classes of polyphenols are also considered.
Collapse
Affiliation(s)
- Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
- Correspondence: (C.D.L.); (P.R.); Tel.: +39-02-5031-8371 (P.R.)
| | - Francesca Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
| | - Simone Biella
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
| | - Creina Stockley
- The Australian Wine Research Institute (AWRI), Glen Osmond 5064, Australia;
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
- Correspondence: (C.D.L.); (P.R.); Tel.: +39-02-5031-8371 (P.R.)
| |
Collapse
|
33
|
DiNicolantonio JJ, McCarty MF. Targeting Casein kinase 2 with quercetin or enzymatically modified isoquercitrin as a strategy for boosting the type 1 interferon response to viruses and promoting cardiovascular health. Med Hypotheses 2020; 142:109800. [PMID: 32388479 DOI: 10.1016/j.mehy.2020.109800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
The serine/threonine kinase CK2 has been shown to down-regulate the production of type 1 interferons in response to viral infections by conferring an inhibitory phosphorylation on RIG-I, which functions to detect double-stranded RNA generated during replication of RNA viruses. Quercetin and certain other planar flavones/flavonols can inhibit CK2 in high nanomolar concentrations; this may explain quercetin's ability to slow the proliferation of RNA viruses in cell cultures and in mice. Limited clinical evidence suggests that supplemental quercetin may decrease risk for upper respiratory infections in humans. Quercetin and enzymatically-modified isoquercitrin (EMIQ - a food additive/nutraceutical that upon oral administration achieves far higher plasma concentrations of quercetin than quercetin per se) also have exerted a range of vascular-protective effects clinically and in rodents - improving endothelial function, warding off atherosclerosis, lowering blood pressure, decreasing C-reactive protein, aiding glycemic control, stabilizing platelets - that might also, at least in part, reflect CK2 inhibition. The utility of quercetin, EMIQ, and other clinically feasible CK2 inhibitors for aiding control of viral infections and promoting vascular and metabolic health merits further evaluation.
Collapse
|