1
|
Ngoh SY, Shen X, Nankervis L, Hua K. Evaluation of Energy Utilisation Efficiencies of Digestible Macronutrients in Juvenile Malabar Snapper ( Lutjanus malabaricus) Reveals High Protein Requirement for Optimal Growth Using Both Factorial and Multifactorial Approaches. AQUACULTURE NUTRITION 2024; 2024:5467206. [PMID: 39735178 PMCID: PMC11681985 DOI: 10.1155/anu/5467206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024]
Abstract
Malabar snapper (Lutjanus malabaricus) is an economically important marine fish throughout the Indo-Pacific, with an emerging aquaculture industry. Although generic marine feeds are available for production, these are not optimised for this species. Understanding energy utilisation and balance can provide insight into suitable macronutrient profiles for new species to provide a baseline for future development. This study, therefore, evaluated the effect of dietary macronutrient composition (i.e., protein, fat, and carbohydrate) on the utilisation efficiencies of digestible energy (DE) in juvenile Malabar snapper using two isonitrogenous diets (high fat: HF and low fat: LF) with contrasting fat and carbohydrate content. Each diet was fed at four feeding levels (100%, 75%, 50%, and 25% apparent satiation) for 56 days, creating a 2 by 4 factorial design. The maintenance energy requirement of Malabar snapper was estimated to be 76.7 kJ kg-0.8 day-1, while the utilisation efficiencies of digestible protein (DP) and fat were 73.6% and 68.3%, respectively. Fish fed with LF, which has lower dietary fat and higher dietary carbohydrate levels, had significantly reduced energy utilisation efficiency for growth and significantly higher partial energy utilisation efficiency of digestible fat (DF) (p < 0.05). Since body moisture is usually proportional to body fat content in fish, this implies that the energy from carbohydrates preferentially enters lipogenesis rather than being available for somatic growth, and adiposity does not directly result in weight gain. Malabar snapper utilises DF in preference to protein for metabolism, demonstrating a protein-sparing effect from lipids at DE intake levels below the maintenance requirement. Conversely, given the higher efficiency of fat retention than protein retention, protein is likely used before fat when energy intake is above maintenance. These findings suggest that Malabar snapper requires high levels of DP in its diet to support growth and that energy from dietary carbohydrates is diverted towards adiposity, consequently reducing growth.
Collapse
Affiliation(s)
- Si Yan Ngoh
- Tropical Future Institute, James Cook University, Singapore, Singapore
- Marine Aquaculture Centre, Aquaculture Department, Urban Food Solution Division, Singapore Food Agency, Singapore, Singapore
| | - Xueyan Shen
- Tropical Future Institute, James Cook University, Singapore, Singapore
| | - Leo Nankervis
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Australia
| | - Katheline Hua
- Tropical Future Institute, James Cook University, Singapore, Singapore
| |
Collapse
|
2
|
Gong Y, Xi L, Liu Y, Lu Q, Zhang Z, Liu H, Jin J, Yang Y, Zhu X, Xie S, Han D. Sequential Activations of ChREBP and SREBP1 Signals Regulate the High-Carbohydrate Diet-Induced Hepatic Lipid Deposition in Gibel Carp ( Carassius gibelio). AQUACULTURE NUTRITION 2023; 2023:6672985. [PMID: 37520290 PMCID: PMC10374375 DOI: 10.1155/2023/6672985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
The present study investigated the sequential regulation signals of high-carbohydrate diet (HCD)-induced hepatic lipid deposition in gibel carp (Carassius gibelio). Two isonitrogenous and isolipidic diets, containing 25% (normal carbohydrate diet, NCD) and 45% (HCD) corn starch, were formulated to feed gibel carp (14.82 ± 0.04 g) for 8 weeks. The experimental fish were sampled at 2nd, 4th, 6th, and 8th week. In HCD group, the hyperlipidemia and significant hepatic lipid deposition (oil red O area and triglyceride content) was found at 4th, 6th, and 8th week, while the significant hyperglycemia was found at 2nd, 4th, and 8th week, compared to NCD group (P < 0.05). HCD induced hepatic lipid deposition via increased hepatic lipogenesis (acc, fasn, and acly) but not decreased hepatic lipolysis (hsl and cpt1a). When compared with NCD group, HCD significantly elevated the hepatic sterol regulatory element binding proteins 1 (SREBP1) signals (positive hepatocytes and fluorescence intensity) at 4th, 6th, and 8th week (P < 0.05). The hepatic SREBP1 signals increased from 2nd to 6th week, but decreased at 8th week due to substantiated insulin resistance (plasma insulin levels, plasma glucose levels, and P-AKTSer473 levels) in HCD group. Importantly, the hepatic carbohydrate response element binding protein (ChREBP) signals (positive hepatocytes, fluorescence intensity, and expression levels) were all significantly elevated by HCD-induced glucose-6-phosphate (G6P) accumulation at 2nd, 4th, 6th, and 8th week (P < 0.05). Compared to 2nd and 4th week, the hepatic ChREBP signals and G6P contents was significantly increased by HCD at 6th and 8th week (P < 0.05). The HCD-induced G6P accumulation was caused by the significantly increased expression of hepatic gck, pklr, and glut2 (P < 0.05) but not 6pfk at 4th, 6th, and 8th week, compared to NCD group. These results suggested that the HCD-induced hepatic lipid deposition was mainly promoted by SREBP1 in earlier stage and by ChREBP in later stage for gibel carp. This study revealed the sequential regulation pathways of the conversion from feed carbohydrate to body lipid in fish.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
3
|
Zhong L, Liu H, Zhang H, Zhang W, Li M, Huang Y, Yao J, Huang X, Geng Y, Chen D, Ouyang P, Yang S, Luo W, Yin L. High Starch in Diet Leads to Disruption of Hepatic Glycogen Metabolism and Liver Fibrosis in Largemouth Bass (Micropterus salmoides), Which is Mediated by the PI3K/Akt Signaling Pathway. Front Physiol 2022; 13:880513. [PMID: 35677086 PMCID: PMC9168315 DOI: 10.3389/fphys.2022.880513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its special flavour and cheapness, starch is a source of nutrition for humans and most animals, some of whom even prefer to consume large amounts of starchy foods. However, the use of starch by carnivorous fish is limited and excessive starch intake can lead to liver damage, but the mechanism of damage is not clear. Therefore, in this study, two isonitrogenous and isolipid semi-pure diets, Z diet (0% starch) and G diet (22% starch), were formulated, respectively. The largemouth bass (M. salmoides) cultured in fiberglass tanks were randomly divided into two groups and fed the two diets for 45 days. Blood and liver were collected on day 30 and 45 for enzymology, histopathology, ultramicropathology, flow cytometry, and transcriptomics to investigate the damage of high starch on the liver of largemouth bass and its damage mechanism. The results showed that the high starch not affect the growth performance of largemouth bass. However, high starch caused a whitening of the liver and an increase in hepatopancreas index (HSI), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum. Histopathological observations showed that high starch led to severe vacuolisation, congestion, and moderate to severe necrotizing hepatitis in the liver. The high starch intake led to a significant increase in postprandial blood glucose and insulin in serum of largemouth bass, promoting the synthesis and accumulation of large amounts of hepatic glycogen in the liver, leading to the loss of hepatocyte organelles and inducing liver fibrosis. Meanwhile, high starch induced the production of oxidative stress and promoted apoptosis and necrosis of hepatocytes. Transcriptome analysis revealed that there were 10,927 and 2,656 unique genes in the G and Z groups, respectively. KEGG enrichment analysis showed that 19 pathways were significantly enriched, including those related to glucose metabolism and cell survival. Network mapping based on enrichment pathways and differential expressing genes showed the emergence of a regulatory network dominated by PI3K/Akt signaling pathway. This indicated that the PI3K/Akt signalling pathway plays a very important role in this process, regulating the liver injury caused by high starch. Our results provide a reference for the mechanism of liver injury caused by high starch, and the PI3K/Akt signalling pathway could be a potential therapeutic target for liver injury caused by high starch.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongli Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Hangzhou, China
| | - Weidong Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Minghao Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiayun Yao
- Zhejiang Institute of Freshwater Fisheries, Hangzhou, China
- *Correspondence: Jiayun Yao, ; Xiaoli Huang,
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jiayun Yao, ; Xiaoli Huang,
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| |
Collapse
|
4
|
Huang X, Zhong L, Kang Q, Liu S, Feng Y, Geng Y, Chen D, Ou Y, Yang S, Yin L, Luo W. A High Starch Diet Alters the Composition of the Intestinal Microbiota of Largemouth Bass Micropterus salmoides, Which May Be Associated With the Development of Enteritis. Front Microbiol 2021; 12:696588. [PMID: 34305862 PMCID: PMC8297414 DOI: 10.3389/fmicb.2021.696588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Starch is an inexpensive feed ingredient that has been widely used in fish feed. However, starch utilization by carnivorous fish is limited and excess starch is detrimental to the health of the organism. High starch diets often lead to liver damage, but the effects on the intestine are often overlooked. Therefore, in this study, two isonitrogenous and isolipidic semi-pure diets (NC: 0% α-starch, HC: 22% α-starch) were formulated and fed to largemouth bass (Micropterus salmoides) for 45 days. The effects of the high starch diet on the intestine of largemouth bass were comprehensively investigated by intestinal microbiota, histopathology, ultrastructural pathology, and enzymology analyses. Feeding the HC diet did not affect the growth of largemouth bass during the experimental period. However, the high starch diet led to a reduction in the diversity and abundance of intestinal microbiota in largemouth bass, with a significant increase in the abundance of harmful bacteria (Aeromonas) and a decrease in the abundance of beneficial bacteria (Clostridium, Lactobacillus, and Bifidobacterium). Feeding the HC diet caused the development of enteritis, with goblet cell hyperplasia, epithelial necrosis and detachment and inflammatory cell infiltration, and leading to enlarged apical openings and mitochondrial damage in goblet cells. Long-term feeding of the HC diet inhibited intestinal α-amylase activity. changes in the intestinal microbiota, such as an increase in Aeromonas and a decrease in Clostridium, Lactobacillus, and Bifidobacterium, may be closely related to the development of enteritis. Therefore, adding these beneficial bacteria as probiotics may be an effective way to prevent damage to the intestine of largemouth bass from a high carbohydrate diet. Our results suggest reducing the amount of starch added to the largemouth bass diets. This study provides a reference for protecting the largemouth bass gut during modern intensive culture.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Qin Kang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Yang Feng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|