1
|
Seth J, Sharma S, Leong CJ, Rabkin SW. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Ameliorate Heart Failure through Reductions in Oxidative Stress: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:955. [PMID: 39199201 PMCID: PMC11351866 DOI: 10.3390/antiox13080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The objectives of this study were to explore the role that eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) plays in heart failure (HF), highlighting the potential connection to oxidative stress pathways. Following PRISMA guidelines, we conducted electronic searches of the literature in MEDLINE and EMBASE focusing on serum EPA and/or DHA and EPA and/or DHA supplementation in adult patients with heart failure or who had heart failure as an outcome of this study. We screened 254 studies, encompassing RCTs, observational studies, and cohort studies that examined HF outcomes in relation to either serum concentrations or dietary supplementation of EPA and/or DHA. The exclusion criteria were pediatric patients, non-HF studies, abstracts, editorials, case reports, and reviews. Eleven studies met our criteria. In meta-analyses, high serum concentrations of DHA were associated with a lower rate of heart failure with a hazard ratio of 0.74 (CI = 0.59-0.94). High serum concentrations of EPA also were associated with an overall reduction in major adverse cardiovascular events with a hazard ratio of 0.60 (CI = 0.46-0.77). EPA and DHA, or n3-PUFA administration, were associated with an increased LVEF with a mean difference of 1.55 (CI = 0.07-3.03)%. A potential explanation for these findings is the ability of EPA and DHA to inhibit pathways by which oxidative stress damages the heart or impairs cardiac systolic or diastolic function producing heart failure. Specifically, EPA may lower oxidative stress within the heart by reducing the concentration of reactive oxygen species (ROS) within cardiac tissue by (i) upregulating nuclear factor erythroid 2-related factor 2 (Nrf2), which increases the expression of antioxidant enzyme activity, including heme oxygenase-1, thioredoxin reductase 1, ferritin light chain, ferritin heavy chain, and manganese superoxide dismutase (SOD), (ii) increasing the expression of copper-zinc superoxide dismutase (MnSOD) and glutathione peroxidase, (iii) targeting Free Fatty Acid Receptor 4 (Ffar4), (iv) upregulating expression of heme-oxygenase-1, (v) lowering arachidonic acid levels, and (vi) inhibiting the RhoA/ROCK signaling pathway. DHA may lower oxidative stress within the heart by (i) reducing levels of mitochondrial-fission-related protein DRP-1(ser-63), (ii) promoting the incorporation of cardiolipin within the mitochondrial membrane, (iii) reducing myocardial fibrosis, which leads to diastolic heart failure, (iv) reducing the expression of genes such as Appa, Myh7, and Agtr1α, and (v) reducing inflammatory cytokines such as IL-6, TNF-α. In conclusion, EPA and/or DHA have the potential to improve heart failure, perhaps mediated by their ability to modulate oxidative stress.
Collapse
Affiliation(s)
- Jayant Seth
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Sohat Sharma
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Cameron J. Leong
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Simon W. Rabkin
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
- Department of Medicine, Division of Cardiology, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
2
|
Dou L, Peng Y, Zhang B, Yang H, Zheng K. Immune Remodeling during Aging and the Clinical Significance of Immunonutrition in Healthy Aging. Aging Dis 2024; 15:1588-1601. [PMID: 37815906 PMCID: PMC11272210 DOI: 10.14336/ad.2023.0923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023] Open
Abstract
Aging is associated with changes in the immune system and the gut microbiota. Immunosenescence may lead to a low-grade, sterile chronic inflammation in a multifactorial and dynamic way, which plays a critical role in most age-related diseases. Age-related changes in the gut microbiota also shape the immune and inflammatory responses. Nutrition is a determinant of immune function and of the gut microbiota. Immunonutrion has been regarded as a new strategy for disease prevention and management, including many age-related diseases. However, the understanding of the cause-effect relationship is required to be more certain about the role of immunonutrition in supporting the immune homeostasis and its clinical relevance in elderly individuals. Herein, we review the remarkable quantitative and qualitative changes during aging that contribute to immunosenescence, inflammaging and microbial dysbiosis, and the effects on late-life health conditions. Furthermore, we discuss the clinical significance of immunonutrition in the treatment of age-related diseases by systematically reviewing its modulation of the immune system and the gut microbiota to clarify the effect of immunonutrition-based interventions on the healthy aging.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yang Peng
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bin Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Prokopidis K, Therdyothin A, Giannos P, Morwani-Mangnani J, Ferentinos P, Mitropoulos A, Isanejad M. Does omega-3 supplementation improve the inflammatory profile of patients with heart failure? a systematic review and meta-analysis. Heart Fail Rev 2023; 28:1417-1425. [PMID: 37340115 PMCID: PMC10575807 DOI: 10.1007/s10741-023-10327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Omega-3 fatty acids are potential anti-inflammatory agents that may exert beneficial outcomes in diseases characterised by increased inflammatory profile. The purpose of this study was to comprehensively evaluate the existing research on the effectiveness of n-3 fatty acid supplementation in lowering levels of circulating inflammatory cytokines in patients with heart failure (HF). From the beginning until October 2022, randomised controlled trials (RCTs) were the subject of PubMed, Scopus, Web of Science, and Cochrane Library literature search. Omega-3 fatty acid supplementation vs. placebo were compared in eligible RCTs to see how they affected patients with HF in terms of inflammation, primarily of tumour necrosis factor-alpha (TNF-a), interleukin-6 (IL-6), and c-reactive protein (CRP). A meta-analysis employing the random effects inverse-variance model and standardised mean differences was performed to assess group differences. Ten studies were included in this systematic review and meta-analysis. Our main analysis (k = 5) revealed a beneficial response of n-3 fatty acid supplementation on serum TNF-a (SMD: - 1.13, 95% CI: - 1.75- - 0.50, I2 = 81%, P = 0.0004) and IL-6 levels (k = 4; SMD: - 1.27, 95% CI: - 1.88- - 0.66, I2 = 81%, P < 0.0001) compared to placebo; however, no changes were observed in relation to CRP (k = 6; SMD: - 0.14, 95% CI: - 0.35-0.07, I2 = 0%, P = 0.20). Omega-3 fatty acid supplementation may be a useful strategy for reducing inflammation in patients with HF, but given the paucity of current studies, future studies may increase the reliability of these findings.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Society of Meta-Research and Biomedical Innovation, London, UK
| | - Atiporn Therdyothin
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Orthopedics, Police General Hospital, 492/1 Rama I Rd, Pathum Wan, Pathum Wan District, Bangkok, Thailand
| | - Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Jordi Morwani-Mangnani
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | | | - Alexandros Mitropoulos
- Lifestyle, Exercise and Nutrition Improvement (LENI) Research Group, Department of Nursing and Midwifery, Sheffield Hallam University, Sheffield, UK
| | - Masoud Isanejad
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Barquilha G, Dos Santos CMM, Caçula KG, Santos VC, Polotow TG, Vasconcellos CV, Gomes-Santos JAF, Rodrigues LE, Lambertucci RH, Serdan TDA, Levada-Pires AC, Hatanaka E, Cury-Boaventura MF, de Freitas PB, Pithon-Curi TC, Masi LN, Barros MP, Curi R, Gorjão R, Hirabara SM. Fish Oil Supplementation Improves the Repeated-Bout Effect and Redox Balance in 20-30-Year-Old Men Submitted to Strength Training. Nutrients 2023; 15:1708. [PMID: 37049548 PMCID: PMC10096819 DOI: 10.3390/nu15071708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Herein, we investigated the effect of fish oil supplementation combined with a strength-training protocol, for 6 weeks, on muscle damage induced by a single bout of strength exercise in untrained young men. Sixteen men were divided into two groups, supplemented or not with fish oil, and they were evaluated at the pre-training period and post-training period. We investigated changes before and 0, 24, and 48 h after a single hypertrophic exercise session. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, plasma interleukin-6 (IL-6) and C-reactive protein (CRP) levels, and the redox imbalance were increased in response to the single-bout session of hypertrophic exercises at baseline (pre-training period) and decreased during the post-training period in the control group due to the repeated-bout effect (RBE). The fish oil supplementation exacerbated this reduction and improved the redox state. In summary, our findings demonstrate that, in untrained young men submitted to a strength-training protocol, fish oil supplementation is ideal for alleviating the muscle injury, inflammation, and redox imbalance induced by a single session of intense strength exercises, highlighting this supplementation as a beneficial strategy for young men that intend to engage in strength-training programs.
Collapse
Affiliation(s)
- Gustavo Barquilha
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Cesar Miguel Momesso Dos Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- ENAU Faculty, Ribeirão Pires 09424-130, Brazil
- United Metropolitan Colleges, Centro Universitário FMU, Sao Paulo 01503-001, Brazil
| | - Kim Guimaraes Caçula
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Vinícius Coneglian Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Tatiana Geraldo Polotow
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Cristina Vardaris Vasconcellos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - José Alberto Fernandes Gomes-Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Luiz Eduardo Rodrigues
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Adriana Cristina Levada-Pires
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Elaine Hatanaka
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Paulo Barbosa de Freitas
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- Instituto Butantan, Sao Paulo 05503-900, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| |
Collapse
|
5
|
Kalyuzhin VV, Teplyakov AT, Bespalova ID, Kalyuzhina EV, Terentyeva NN, Grakova EV, Kopeva KV, Usov VY, Garganeeva NP, Pavlenko OA, Gorelova YV, Teteneva AV. Promising directions in the treatment of chronic heart failure: improving old or developing new ones? BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-181-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Unprecedented advances of recent decades in clinical pharmacology, cardiac surgery, arrhythmology, and cardiac pacing have significantly improved the prognosis in patients with chronic heart failure (CHF). However, unfortunately, heart failure continues to be associated with high mortality. The solution to this problem consists in simultaneous comprehensive use in clinical practice of all relevant capabilities of continuously improving methods of heart failure treatment proven to be effective in randomized controlled trials (especially when confirmed by the results of studies in real clinical practice), on the one hand, and in development and implementation of innovative approaches to CHF treatment, on the other hand. This is especially relevant for CHF patients with mildly reduced and preserved left ventricular ejection fraction, as poor evidence base for the possibility of improving the prognosis in such patients cannot justify inaction and leaving them without hope of a clinical improvement in their condition. The lecture consistently covers the general principles of CHF treatment and a set of measures aimed at inotropic stimulation and unloading (neurohormonal, volumetric, hemodynamic, and immune) of the heart and outlines some promising areas of disease-modifying therapy.
Collapse
Affiliation(s)
| | - A. T. Teplyakov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | | | | | | | - E. V. Grakova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - K. V. Kopeva
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - V. Yu. Usov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | | | | | | | | |
Collapse
|