1
|
Yao H, Dou Z, Zhao Z, Liang X, Yue H, Ma W, Su Z, Wang Y, Hao Z, Yan H, Wu Z, Wang L, Chen G, Yang J. Transcriptome analysis of the Bactrian camel (Camelus bactrianus) reveals candidate genes affecting milk production traits. BMC Genomics 2023; 24:660. [PMID: 37919661 PMCID: PMC10621195 DOI: 10.1186/s12864-023-09703-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. METHODS We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. RESULTS The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein-protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. CONCLUSIONS This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Haitao Yue
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Liang Wang
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China.
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China.
| |
Collapse
|
2
|
Zeng J, Cai J, Wang D, Liu H, Sun H, Liu J. Heat stress affects dairy cow health status through blood oxygen availability. J Anim Sci Biotechnol 2023; 14:112. [PMID: 37658441 PMCID: PMC10474781 DOI: 10.1186/s40104-023-00915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/06/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Rises in global warming and extreme weather occurrence make the risk of heat stress (HS) induced by high ambient temperatures more likely in high-yielding dairy cows, resulting in low milk quality and yield. In animals, oxygen is involved in many physiological and metabolic processes, but the effects of HS on oxygen metabolism remain unclear. Thus, the current study aimed to investigate how oxygen metabolism plays a role in health status of dairy cows by measuring the milk yield, milk composition, and blood biochemical variables of cows under different levels of HS: none (No-HS), mild (Mild-HS), and moderate HS (Mod-HS). RESULTS The HS significantly increased rectal temperature (Ptreat < 0.01) and respiration rate (Ptreat < 0.01). Under Mod-HS, greater Na+ (P < 0.05) and lower total CO2, and pH (P < 0.05) were observed relative to those under No-HS and Mild-HS. Oxygen concentrations in both coccygeal artery and mammary vein (Ptreat < 0.01) were lower under Mod-HS than under No-HS. Coccygeal vein concentrations of heat shock protein 90 (HSP90) (P < 0.05) increased during Mod-HS compared with those in cows under No-HS. Malondialdehyde increased during Mod-HS, and glutathione peroxidase (P < 0.01) increased during Mild-HS. Coccygeal vein concentrations of vascular endothelial growth factor (P < 0.01), heme oxygenase-1 (P < 0.01), and hypoxia-inducible factor 1α (P < 0.01) were greater in cows under Mod-HS than those under No-HS. Red blood cell count (P < 0.01) and hemoglobin concentration (P < 0.01) were lower in the coccygeal vein of dairy cows under Mild- and Mod-HS than those of cows under No-HS. CONCLUSIONS Exposure to HS negatively impacts the health status and lactation performance of dairy cows by limiting oxygen metabolism and transportation. However, the specific mechanism by which HS affects mammary function in cows remains unclear and requires further exploration.
Collapse
Affiliation(s)
- Jia Zeng
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Huizeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Bertasso IM, de Moura EG, Pietrobon CB, Cabral SS, Kluck GEG, Atella GC, Manhães AC, Lisboa PC. Low protein diet during lactation programs hepatic metabolism in adult male and female rats. J Nutr Biochem 2022; 108:109096. [PMID: 35779796 DOI: 10.1016/j.jnutbio.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
The liver is an essential regulator of energy metabolism, and its function can be disrupted by nutritional alterations. Since liver development continues during breastfeeding nutritional challenges during this period predispose patients to diseases throughout life. A maternal protein-restricted (PR) diet during lactation promotes reductions in the body weight, adiposity, and plasma glucose and insulin, leptin resistance and an increase in corticosterone and catecholamines in adult male rat offspring. Here, we investigated hepatic metabolism in the offspring (both sexes) of PR (8% protein diet during lactation) and control (23% protein diet) dams. Both male and female offspring were evaluated at 6 months of age. PR males had no liver steatosis and manifested a reduction in lipids in hepatocytes adjacent to the vasculature. These animals had lower levels of esterified cholesterol in hepatocytes, suggesting higher biliary excretion, unchanged glycolysis and gluconeogenesis, and lower contents of the markers of mitochondrial redox balance and endoplasmic reticulum (ER) stress response and estrogen receptor alpha. PR females showed normal hepatic morphology associated with higher uptake of cholesterol esters, normal glycolysis and gluconeogenesis, and lower ER stress parameters without changes in the key markers of the redox balance. Additionally, these animals had lower content of estrogen receptor alpha and higher content of androgen receptor. The maternal PR diet during lactation did not program hepatic lipid accumulation in the adult progeny. However, several repair homeostasis pathways were altered in males and females, possibly compromising maintenance of normal liver function.
Collapse
Affiliation(s)
- Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Silva Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|