1
|
Turco S, Drais MI, Rossini L, Di Sora N, Brugneti F, Speranza S, Contarini M, Mazzaglia A. Genomic and Pathogenic Characterization of Akanthomyces muscarius Isolated from Living Mite Infesting Hazelnut Big Buds. Genes (Basel) 2024; 15:993. [PMID: 39202354 PMCID: PMC11354060 DOI: 10.3390/genes15080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The capability of entomopathogenic fungi to live as plant endophytes is well established. However, their presence in undiscovered environmental niches represents the beginning of a new challenging research journey. Recently, Akanthomyces muscarius (Ascomycota, Cordycipitaceae) (Petch) Spatafora, Kepler & B. Shrestha was isolated from hazelnut buds infested by the big bud mite pest Phytoptus avellanae Nalepa, which makes the buds swollen, reddish, and unable to further develop. Gall formation is known to be regulated by a consortium of microbes and mites, and to better understand the possible role of A. muscarius within the infested gall, its whole genome sequence was obtained using a hybrid approach of Illumina and Nanopore reads. The functional and comparative genomics analysis provided within this study may help answer questions related to the ecology and the entomopathogenicity of this fungus.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Mounira Inas Drais
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Luca Rossini
- Service d’Automatique et d’Analyse des Systèmes, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Nicolò Di Sora
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Federico Brugneti
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Stefano Speranza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE, CONICET-UNLP), La Plata B1900, Argentina
| | - Mario Contarini
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| |
Collapse
|
2
|
Armand A, Khodaparast SA, Nazari S, Zibaee A. Morpho-molecular study of entomopathogenic fungi associated with citrus orchard pests in Northern Iran. Arch Microbiol 2024; 206:202. [PMID: 38568380 DOI: 10.1007/s00203-024-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Entomopathogenic fungi play a significant role in regulating insect populations in nature and have potential applications in pest management strategies in different regions. Citrus spp. are among the important horticultural products in northern Iran, and the orchards are affected by different insect pests, especially mealybugs. This study aimed to isolate and identify entomopathogenic fungi associated with citrus orchard pests in northern Iran, focusing on Akanthomyces and Lecanicillium species on mealybugs. Through the samples collected from different regions within Guilan province, 12 fungal isolates were collected and identified based on the combination of morphological characteristics and molecular data. Akanthomyces lecanii, A. muscarius, Engyodontium rectidentatum, Lecanicillium aphanocladii and Lecanicillium rasoulzarei sp. nov. were identified. Of these, A. muscarius on Lepidosaphes sp., E. rectidentatum on Coccidae, and L. aphanocladii on Tetranychus urticae are reported as new fungal-host records from Iran. Moreover, a new species, Lecanicillium rasoulzarei, is illustrated, described, and compared with closely related species.
Collapse
Affiliation(s)
- Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Saeed Nazari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
3
|
Hajek AE, Everest TA, Clifton EH. Accumulation of Fungal Pathogens Infecting the Invasive Spotted Lanternfly, Lycorma delicatula. INSECTS 2023; 14:912. [PMID: 38132586 PMCID: PMC10871119 DOI: 10.3390/insects14120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In the eastern United States, populations of the invasive spotted lanternfly, Lycorma delicatula, are abundant and spreading. Four species of naturally occurring entomopathogenic fungi have previously been reported as infecting these planthoppers, with two of these causing epizootics. Nymphal- and adult-stage lanternflies in Pennsylvania and New York were surveyed for entomopathogenic fungal infections from October 2021 to November 2023, and assays were conducted to confirm the pathogenicity of species that were potentially pathogenic. Beauveria bassiana was the most abundant pathogen, but we report an additional 15 previously unreported species of entomopathogenic fungi infecting spotted lanternflies, all in the order Hypocreales (Ascomycota). The next most common pathogens were Fusarium fujikuroi and Sarocladium strictum. While infection prevalence by species was often low, probably impacted to some extent by the summer drought in 2022, together these pathogens caused a total of 6.7% mortality. A significant trend was evident over time within a season, with low levels of infection among nymphs and higher infection levels in mid- and late-stage adults, the stages when mating and oviposition occur.
Collapse
Affiliation(s)
- Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; (T.A.E.); (E.H.C.)
| | - Thomas A. Everest
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; (T.A.E.); (E.H.C.)
| | - Eric H. Clifton
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; (T.A.E.); (E.H.C.)
- Research & Development, BioWorks Inc., Victor, NY 14564, USA
| |
Collapse
|
4
|
Lopes RB, Souza TAD, Mascarin GM, Souza DA, Bettiol W, Souza HR, Faria M. Akanthomyces diversity in Brazil and their pathogenicity to plant-sucking insects. J Invertebr Pathol 2023; 200:107955. [PMID: 37364675 DOI: 10.1016/j.jip.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Currently, species within the genus Akanthomyces are poorly studied and explored compared to other hypocrealean entomopathogenic fungi employed as commercial biocontrol agents. This study aimed to molecularly identify 23 Brazilian Akanthomyces strains, most originally isolated from aphids and scales (n = 22), and one from the coffee leaf rust, and further investigate their pathogenicity to six plant-sucking insects as a means to better understand their host spectra. We also explored the capacity of A. muscarius CG935 for blastospore production via liquid fermentation. Akanthomyces dipterigenus, A. muscarius, A. lecanii, and two unidentified species were recognized as naturally occurring in Brazil. Akanthomyces dipterigenus CG829 and A. muscarius CG935 were highly virulent to nymphs of Bemisia tabaci (67.5-85.4% confirmed mortality) and the aphid Aphis fabae (74.6-75.3%), but only the first strain was virulent to the mealybug Planococcus sp. (80.9%). Akanthomyces lecanii CG824 was weakly virulent to all tested insects. None of the strains were pathogenic to the thrips Caliothrips phaseoli, and all strains showed low virulence to the wooly whitefly Aleurothrixus floccosus and the scale Duplachionaspis divergens. Submerged liquid fermentation yields varied from 1.72 × 109 (day 2) to 3.90 × 109 (day 5) blastospores mL-1. Blastospores or aerial conidia from A. muscarius CG935, at a single concentration of 1 × 107 viable propagules mL-1, resulted in 67.5-83.1% mortality of B. tabaci nymphs within 8 days post-treatment. Overall, these results encourage additional studies that could lead to the development of new mycopesticides based on Akanthomyces strains.
Collapse
Affiliation(s)
| | | | | | - Daniela Aguiar Souza
- Embrapa Genetic Resources and Biotechnology, Brasilia, Federal District, 70770-917, Brazil.
| | - Wagner Bettiol
- Embrapa Environment, Road SP-340 Km 127.5, Jaguariuna, SP 13918-110, Brazil.
| | - Hebert Ribeiro Souza
- Embrapa Genetic Resources and Biotechnology, Brasilia, Federal District, 70770-917, Brazil.
| | - Marcos Faria
- Embrapa Genetic Resources and Biotechnology, Brasilia, Federal District, 70770-917, Brazil.
| |
Collapse
|
5
|
Saidi A, Mebdoua S, Mecelem D, Al-Hoshani N, Sadrati N, Boufahja F, Bendif H. Dual biocontrol potential of the entomopathogenic fungus Akanthomyces muscarius against Thaumetopoea pityocampa and plant pathogenic fungi. Saudi J Biol Sci 2023; 30:103719. [PMID: 37457236 PMCID: PMC10344813 DOI: 10.1016/j.sjbs.2023.103719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Akanthomyces spp. species are known for their capacity to biocontrol of certain insects and plant pathogens; however, their ability to biocontrol the pine processionary (Thaumetopoea pityocampa) and certain phytopathogenic fungi belonging to the genera Fusarium and Curvularia have not been studied before. In this study, a strain from Akanthomyces muscarius was isolated from wheat grains and then identified by morphological and molecular tests. The strain was further studied for its capacity to control Thaumetopoea pityocampa larvae through dose-mortality tests, and its ability to control some phytopathogenic fungi strains of the genera Fusarium and Curvularia was studied through direct confrontation tests. Dose-mortality tests at three concentrations of Akanthomyces muscarius against the first instar larvae revealed a mortality of 92.15% after 11 days for the concentration of 2.3 × 106conidia.ml-1, with a median lethal concentration of 7.6 x103 conidia.ml1. Our isolate also showed antifungal activity against these phytopathogenic fungi with inhibition rates ranging from 39.61% to 52.94%. Akanthomyces muscarius proved to be a promising biocontrol agent for plant pests and diseases.
Collapse
Affiliation(s)
- Amal Saidi
- Laboratory de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira,10000 Bouira, Algeria
| | - Samira Mebdoua
- Department of Agronomic Sciences, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira,10000 Bouira, Algeria
| | - Dalila Mecelem
- Department of Agronomic Sciences, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira,10000 Bouira, Algeria
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouari Sadrati
- Laboratory of Characterization and Valorization of Natural Resources, University Mohamed El Bachir El Ibrahimi, Bordj Bou-Arreridj 34000, Algeria
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hamdi Bendif
- Natural and Life Sciences Department, Faculty of Sciences, Mohamed Boudiaf University, BP 166 Msila, 28000 Msila, Algeria
| |
Collapse
|
6
|
First Description of Akanthomyces uredinophilus comb. nov. from Hemipteran Insects in America. DIVERSITY 2022. [DOI: 10.3390/d14121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Filamentous fungi of the genera Lecanicillium and Akanthomyces (Ascomycota: Hypocreales: Cordycipitaceae) have been isolated from a variety of insect orders and are of particular interest as biological control agents for phloem-sucking plant pests. Three aphid- and whitefly-pathogenic fungal strains that had been isolated from naturally infected Trialeurodes vaporariorum and Myzus persicae in Argentina were assigned to the species Lecanicillium uredinophilum by combined analyses of morphology and ITS, LSU, EF1A, RPB1 and RPB2-based molecular taxonomy, giving rise to both the first description of this fungus from hemipteran insects and its first report from outside South-East Asia, especially from the American continent. A combination of phylogenetic reconstruction and analysis of pair-wise sequence similarities demonstrated that—reflecting recent changes in the systematics of Cordycipitaceae—the entire species L. uredinophilum should be transferred to the genus Akanthomyces. Consequently, the introduction of a new taxon, Akanthomaces uredinophilus comb. nov., was proposed. Moreover, extensive data mining for cryptic A. uredinophilus sequences revealed that (i) the fungus is geographically widely distributed, including earlier unrecognized isolations from further American countries such as the USA, Mexico, and Colombia, and (ii) entomopathogenic and mycoparasitic lifestyles are predominant in this species.
Collapse
|