1
|
Sivell O, Raper C, Mitchell R, Sivell D, Natural History Museum Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of a hoverfly Eristalinus aeneus (Scopoli, 1763). Wellcome Open Res 2024; 9:69. [PMID: 38813464 PMCID: PMC11134147 DOI: 10.12688/wellcomeopenres.20636.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
We present a genome assembly from an individual female Eristalinus aeneus (a hoverfly; Arthropoda; Insecta; Diptera; Syrphidae). The genome sequence is 495.4 megabases in span. Most of the assembly is scaffolded into 6 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 15.97 kilobases in length.
Collapse
Affiliation(s)
| | | | - Ryan Mitchell
- Independent researcher, Sligo Town, County Sligo, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Tan X, Li H, Zhang Z, Yang Y, Jin Z, Chen W, Tang D, Wei C, Tang Q. Characterization of the Difference between Day and Night Temperatures on the Growth, Photosynthesis, and Metabolite Accumulation of Tea Seedlings. Int J Mol Sci 2023; 24:ijms24076718. [PMID: 37047691 PMCID: PMC10095163 DOI: 10.3390/ijms24076718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Currently, the effects of the differences between day and night temperatures (DIFs) on tea plant are poorly understood. In order to investigate the influence of DIFs on the growth, photosynthesis, and metabolite accumulation of tea plants, the plants were cultivated under 5 °C (25/20 °C, light/dark), 10 °C (25/15 °C, light/dark), and 15 °C (25/10 °C, light/dark). The results showed that the growth rate of the new shoots decreased with an increase in the DIFs. There was a downward trend in the photosynthesis among the treatments, as evidenced by the lowest net photosynthetic rate and total chlorophyll at a DIF of 15 °C. In addition, the DIFs significantly affected the primary and secondary metabolites. In particular, the 10 °C DIF treatment contained the lowest levels of soluble sugars, tea polyphenols, and catechins but was abundant in caffeine and amino acids, along with high expression levels of theanine synthetase (TS3) and glutamate synthase (GOGAT). Furthermore, the transcriptome data revealed that the differentially expressed genes were enriched in valine, leucine, and isoleucine degradation, flavone/flavonol biosyntheses, flavonoid biosynthesis, etc. Therefore, we concluded that a DIF of 10 °C was suitable for the protected cultivation of tea plants in terms of the growth and the quality of a favorable flavor of tea, which provided a scientific basis for the protected cultivation of tea seedlings.
Collapse
Affiliation(s)
- Xiaoqin Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huili Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongyue Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanjuan Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoling Wei
- The State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Kleiman B, Koptur S. Weeds Enhance Insect Diversity and Abundance and May Improve Soil Conditions in Mango Cultivation of South Florida. INSECTS 2023; 14:65. [PMID: 36661992 PMCID: PMC9864375 DOI: 10.3390/insects14010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
This study examined if weeds could serve as insectary plants to increase beneficial insect abundance and diversity in mango cultivation in southern Florida. Additionally, we examined how weed presence affects mango tree soil health. We found that weeds significantly increased pollinating and parasitoid insect abundance and diversity. Eight insect orders and eighteen families were significantly more abundant on mango trees with weeds growing beneath them than those where weeds were removed. There was no difference in predatory insects between treatments, and slightly more herbivorous insects on weedy mango trees. Pollinating insects visiting mango flowers in the weed treatment were significantly greater, as well as spiders on weedy mango trees. However, there were more lacewings (Neuroptera) observed on the mango trees without weeds, and leaf chlorophyll in the old and new mango leaves was significantly greater, in the weed-free treatment. Soil conditions, however, significantly improved in soil carbon and a greater pH reduction in the presence of weeds, though weeds affected neither soil nitrogen, phosphorous, nor chlorophyll in productive green leaves. These results show that a tolerable level of selective weed species' presence may benefit insect, plant, and soil biodiversity in farms. This is important in increasing production, sustainability, and biodiversity in agriculture, which otherwise may be deficient in non-crop life.
Collapse
Affiliation(s)
- Blaire Kleiman
- Agroecology Program, Department of Earth and Environment, International Center for Tropical Botany, Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Suzanne Koptur
- Plant Ecology Lab, Department of Biology, International Center for Tropical Botany, Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
4
|
Sánchez M, Velásquez Y, González M, Cuevas J. Pollination Effectiveness of the Hoverfly Eristalinus aeneus (Scopoli, 1763) in Diploid and Triploid Associated Watermelon Crop. INSECTS 2022; 13:1021. [PMID: 36354845 PMCID: PMC9697508 DOI: 10.3390/insects13111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Watermelon (Citrullus lanatus) is an important crop worldwide. Pollination of this crop is carried out by insects, with honey bees (Apis spp.) and bumble bees (Bombus spp.) as the most used in greenhouse production. Nevertheless, due to the extreme conditions in closed enclosures, these hymenopterans suffer management and behavior problems leading to insufficient pollination. The effectiveness of three release densities (15, 30, and 45 individuals/m2) of Eristalinus aeneus was compared in diploid- and triploid-associated watermelon varieties under protected cultivation. Floral visits, pollen-pistil interaction after pollen transport, yield, and fruit quality were evaluated. The number of floral visits increased with release density in both pistillate and staminate flowers. No significant differences were observed, however, among release densities or between flower types in the duration of the visits. Floral preferences were not found in the behavior of E. aeneus in watermelon. High and medium release densities increased pollen deposition onto the stigma, and consequently the yield of the triploid variety compared to low release density, by 23.8 to 41.8% in 2020 and by 36.3 to 46.7% in 2021. The results of this trial demonstrate the potential of E. aeneus as a managed pollinator in protected cultivation of triploid watermelon.
Collapse
Affiliation(s)
- Manuela Sánchez
- Department of Agronomy, University of Almería, ceiA3, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
- Department of Research and Development, Polyfly S.L., Avenida de la Innovación 15, 04131 Almería, Spain
| | - Yelitza Velásquez
- Department of Research and Development, Polyfly S.L., Avenida de la Innovación 15, 04131 Almería, Spain
| | - Mónica González
- Experimental Station Foundation Cajamar, Paraje las Palmerillas, 25, 04710 El Ejido, Spain
| | - Julián Cuevas
- Department of Agronomy, University of Almería, ceiA3, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| |
Collapse
|