1
|
Kuo YY, Chang JC, Li YH, Huang YF, Wu TY, Nai YS. The Complete Mitochondrial Genome and Phylogenetic Analysis of Rhagastis binoculata (Matsumura, 1909) (Lepidoptera: Sphingidae). Genes (Basel) 2024; 15:1171. [PMID: 39336762 PMCID: PMC11430935 DOI: 10.3390/genes15091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The mitochondrial genome (mitogenome) Rhagastis binoculata (Matsumura, 1909), an endemic moth species in Taiwan, was sequenced and analyzed. The complete circular mitogenome of R. binoculata is 15,303 bp and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and an AT-rich control region. The mitogenome has an overall nucleotide composition of 41.2% A, 11.9% C, 7.5% G, and 39.4% T, with an AT content of 80.6%. Of the protein-coding genes (PCGs), 12 start with ATG, ATT, and ATC, and COX1 starts with a "CGA" codon. All of the stop codons are "TAA, TAG, or T". Our phylogenetic analysis of 21 species of Sphingidae insects suggests that R. binoculata is clustered with Rhagastis mongoliana, which belongs to the subfamily Macroglossinae.
Collapse
Affiliation(s)
- Yu-Yun Kuo
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City 402202, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli District, Taoyuan City 32023, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City 402202, Taiwan
| |
Collapse
|
2
|
Zheng X, Xu Z, Wang D, Zhou C. Life history and mitochondrial genomes of Salassinae and Agliinae (Insecta, Lepidoptera): New insights into the loss of cocooning behaviour and phylogeny of Saturniidae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:107-123. [PMID: 38193275 DOI: 10.1017/s0007485323000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The subfamilies Salassinae and Agliinae are two monogeneric groups of the family Saturniidae. They were regarded as the non-cocooning saturniids in Asia. Since very little information on their life history and mitogenome has been reported, their origin and evolution are still poorly understood. In this study, nature-imitated rearing is used to record the life history of two Aglia and five Salassa species. In addition, four complete mitogenomes are presented, which are the first ones of these two subfamilies. The results show that both Salassinae and Agliinae have lost their cocooning. Moreover, the phylogenetic analysis demonstrates that the subfamily Saturniinae is not monophyletic due to the inclusion of Agliinae and Salassinae.
Collapse
Affiliation(s)
- Xuhongyi Zheng
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zilong Xu
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dong Wang
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Changfa Zhou
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Elameen A, Maduna SN, Mageroy MH, van Eerde A, Knudsen G, Hagen SB, Eiken HG. Novel insight into lepidopteran phylogenetics from the mitochondrial genome of the apple fruit moth of the family Argyresthiidae. BMC Genomics 2024; 25:21. [PMID: 38166583 PMCID: PMC10759517 DOI: 10.1186/s12864-023-09905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND The order Lepidoptera has an abundance of species, including both agriculturally beneficial and detrimental insects. Molecular data has been used to investigate the phylogenetic relationships of major subdivisions in Lepidoptera, which has enhanced our understanding of the evolutionary relationships at the family and superfamily levels. However, the phylogenetic placement of many superfamilies and/or families in this order is still unknown. In this study, we determine the systematic status of the family Argyresthiidae within Lepidoptera and explore its phylogenetic affinities and implications for the evolution of the order. We describe the first mitochondrial (mt) genome from a member of Argyresthiidae, the apple fruit moth Argyresthia conjugella. The insect is an important pest on apples in Fennoscandia, as it switches hosts when the main host fails to produce crops. RESULTS The mt genome of A. conjugella contains 16,044 bp and encodes all 37 genes commonly found in insect mt genomes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and a large control region (1101 bp). The nucleotide composition was extremely AT-rich (82%). All detected PCGs (13) began with an ATN codon and terminated with a TAA stop codon, except the start codon in cox1 is ATT. All 22 tRNAs had cloverleaf secondary structures, except trnS1, where one of the dihydrouridine (DHU) arms is missing, reflecting potential differences in gene expression. When compared to the mt genomes of 507 other Lepidoptera representing 18 superfamilies and 42 families, phylogenomic analyses found that A. conjugella had the closest relationship with the Plutellidae family (Yponomeutoidea-super family). We also detected a sister relationship between Yponomeutoidea and the superfamily Tineidae. CONCLUSIONS Our results underline the potential importance of mt genomes in comparative genomic analyses of Lepidoptera species and provide valuable evolutionary insight across the tree of Lepidoptera species.
Collapse
Affiliation(s)
- Abdelhameed Elameen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway.
| | - Simo N Maduna
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Melissa H Mageroy
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Geir Knudsen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Snorre B Hagen
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Hans Geir Eiken
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| |
Collapse
|
4
|
Yang HJ, Yang ZH, Ren TG, Dong WG. Description and phylogenetic analysis of the complete mitochondrial genome in Eulaelaps silvestris provides new insights into the molecular classification of the family Haemogamasidae. Parasitology 2023; 150:821-830. [PMID: 37395062 PMCID: PMC10478059 DOI: 10.1017/s0031182023000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
In this study, the mitochondrial genome of Eulaelaps silvestris, which parasitizes Apodemus chevrieri, was sequenced and assembled to fill the gap in understanding the molecular evolution of the genus Eulaelaps. The E. silvestris mitochondrial genome is a double-stranded DNA molecule with a length of 14 882 bp, with a distinct AT preference for base composition and a notably higher AT content than GC content. The arrangement between genes is relatively compact, with a total of 10 gene intergenic regions and 12 gene overlap regions. All protein-coding genes had a typical ATN initiation codon, and only 2 protein-coding genes had an incomplete termination codon T. Out of the 13 protein-coding genes, the 5 most frequently used codons ended in A/U, with only 1 codon ending in G/C had an relative synonymous codon usage value >1. Except for trnS1 and trnS2, which lacked the D arm, all other tRNAs were able to form a typical cloverleaf structure; and there were a total of 38 mismatches in the folding process of tRNA genes. Unlike the gene arrangement order of the arthropod hypothetical ancestor, the E. silvestris mitochondrial genome underwent fewer rearrangements, mainly near tRNA genes and control regions. Both the maximum likelihood tree and the Bayesian tree showed that the family Haemogamasidae is most closely related to the family Dermanyssidae. The results not only provide a theoretical basis for studying the phylogenetic relationships of the genus Eulaelaps, but also provide molecular evidence that the family Haemogamasidae does not belong to the subfamily Laelapidae.
Collapse
Affiliation(s)
- Hui-Juan Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| | - Zhi-Hua Yang
- School of Foreign Languages, Dali University, Dali 671000, China
| | | | - Wen-Ge Dong
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| |
Collapse
|
5
|
Nethavhani Z, Straeuli R, Hiscock K, Veldtman R, Morton A, Oberprieler RG, van Asch B. Mitogenomics and phylogenetics of twelve species of African Saturniidae (Lepidoptera). PeerJ 2022; 10:e13275. [PMID: 35462770 PMCID: PMC9022641 DOI: 10.7717/peerj.13275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 01/13/2023] Open
Abstract
African Saturniidae (Lepidoptera) include numerous species consumed at the caterpillar stage throughout the continent, and their importance to local communities as a source of nutrition and seasonal income cannot be overestimated. However, baseline genetic data with utility for the characterization of their diversity, phylogeography and phylogenetic relationships have remained scarce compared to their Asian counterparts. To bridge this gap, we sequenced the mitochondrial genomes of 12 species found in southern Africa for comparative mitogenomics and phylogenetic reconstruction of the family, including the first representatives of the tribes Eochroini and Micragonini. Mitochondrial gene content and organization were conserved across all Saturniidae included in the analyses. The phylogenetic positions of the 12 species were assessed in the context of publicly available mitogenomes using Bayesian inference and maximum likelihood (ML) methods. The monophyly of the tribes Saturniini, Attacini, Bunaeini and Micragonini, the sister relationship between Saturniini and Attacini, and the placement of Eochroa trimenii and Rhodinia fugax in the tribes Eochroini and Attacini, respectively, were strongly supported. These results contribute to significantly expanding genetic data available for African Saturniidae and allow for the development of new mitochondrial markers in future studies.
Collapse
Affiliation(s)
- Zwannda Nethavhani
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - Rieze Straeuli
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - Kayleigh Hiscock
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| | - Ruan Veldtman
- Department of Conservation Ecology and Entomology, University of Stellenbosch, Stellenbosch, Western Cape, South Africa,Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, Western Cape, South Africa
| | | | - Rolf G. Oberprieler
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Barbara van Asch
- Department of Genetics, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
6
|
Liao Q, Yuan J, Dong M, Paterson P, Lam WWT. Drivers of global media attention and representations for antimicrobial resistance risk: an analysis of online English and Chinese news media data, 2015-2018. Antimicrob Resist Infect Control 2021; 10:152. [PMID: 34688313 PMCID: PMC8542296 DOI: 10.1186/s13756-021-01015-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND How antimicrobial resistance (AMR) risk is communicated in news media can shape public understanding and the engagement of different sectors with AMR. This study examined online news media attention for AMR risk and analyzed how AMR risk was communicated using a global sample of English and Chinese news articles. METHODS A total of 16,265 and 8335 English and Chinese news relevant to AMR risk, respectively, published in 2015-2018 were retrieved from a professional media-monitoring platform, to examine media attention for AMR and its drivers, of which, 788 articles from six main English-speaking countries and three main Chinese-speaking territories were drawn using constructed-week sampling for content analysis. RESULTS Media attention mainly fluctuated around official reports or scientific discovery of AMR risks or solutions but seldom around reports of inappropriate antimicrobial use (AMU), and not consistently increased in response to World Antimicrobial Awareness Week. The content analysis found that (1) heterogeneous medical terminologies and the 'superbug' frame were most commonly used to define AMR or AMR risk; (2) a temporal increase in communicating microbial evolution as a process of AMR was identified but communication about inappropriate AMU in general consumers as the cause of AMR remained inadequate; and (3) the multifaceted consequences of AMR and individual actions that can be taken to tackle AMR were inadequately communicated. CONCLUSIONS The media should be encouraged or reoriented to communicate more about actions that can be taken by general consumers to enable collective actions and the multifaceted conseuqences of AMR to encourage one-health approach for tackling AMR.
Collapse
Affiliation(s)
- Qiuyan Liao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Jiehu Yuan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China
| | - Meihong Dong
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China
| | - Pauline Paterson
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Wendy Wing Tak Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|