1
|
Harris M, Kim BY, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. Genetics 2024; 226:iyae019. [PMID: 38366786 PMCID: PMC10990427 DOI: 10.1093/genetics/iyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Harris M, Kim B, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545888. [PMID: 38106201 PMCID: PMC10723260 DOI: 10.1101/2023.06.21.545888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The X chromosome, being hemizygous in males, is exposed one third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across six commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps, and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles California, United States of America
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Nandita Garud
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles California, United States of America
- Department of Human Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Jiang F, Jiang Y, Wang W, Xiao C, Lin R, Xie T, Sung WK, Li S, Jakovlić I, Chen J, Du X. A chromosome-level genome assembly of Cairina moschata and comparative genomic analyses. BMC Genomics 2021; 22:581. [PMID: 34330207 PMCID: PMC8325232 DOI: 10.1186/s12864-021-07897-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Background The Muscovy duck (Cairina moschata) is an economically important duck species, with favourable growth and carcass composition parameters in comparison to other ducks. However, limited genomic resources for Muscovy duck hinder our understanding of its evolution and genetic diversity. Results We combined linked-reads sequencing technology and reference-guided methods for de novo genome assembly. The final draft assembly was 1.12 Gbp with 29 autosomes, one sex chromosome and 4,583 unlocalized scaffolds with an N50 size of 77.35 Mb. Based on universal single-copy orthologues (BUSCO), the draft genome assembly completeness was estimated to be 93.30 %. Genome annotation identified 15,580 genes, with 15,537 (99.72 %) genes annotated in public databases. We conducted comparative genomic analyses and found that species-specific and rapidly expanding gene families (compared to other birds) in Muscovy duck are mainly involved in Calcium signaling, Adrenergic signaling in cardiomyocytes, and GnRH signaling pathways. In comparison to the common domestic duck (Anas platyrhynchos), we identified 104 genes exhibiting strong signals of adaptive evolution (Ka/Ks > 1). Most of these genes were associated with immune defence pathways (e.g. IFNAR1 and TLR5). This is indicative of the existence of differences in the immune responses between the two species. Additionally, we combined divergence and polymorphism data to demonstrate the “faster-Z effect” of chromosome evolution. Conclusions The chromosome-level genome assembly of Muscovy duck and comparative genomic analyses provide valuable resources for future molecular ecology studies, as well as the evolutionary arms race between the host and influenza viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07897-4.
Collapse
Affiliation(s)
- Fan Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Yaoxin Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Wenxuan Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Changyi Xiao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Ruiyi Lin
- College of Animal Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Tanghui Xie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Wing-Kin Sung
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Department of Computer Science, National University of Singapore, Singapore, Singapore
| | - Shijun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, 130118, Changchun, China
| | - Ivan Jakovlić
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000, Lanzhou, China.
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, Chengdu, China.
| | - Xiaoyong Du
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Schield DR, Perry BW, Nikolakis ZL, Mackessy SP, Castoe TA. Population Genomic Analyses Confirm Male-Biased Mutation Rates in Snakes. J Hered 2021; 112:221-227. [PMID: 33502475 DOI: 10.1093/jhered/esab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Male-biased mutation rates occur in a diverse array of organisms. The ratio of male-to-female mutation rate may have major ramifications for evolution across the genome, and for sex-linked genes in particular. In ZW species, the Z chromosome is carried by males two-thirds of the time, leading to the prediction that male-biased mutation rates will have a disproportionate effect on the evolution of Z-linked genes relative to autosomes and the W chromosome. Colubroid snakes (including colubrids, elapids, and viperids) have ZW sex determination, yet male-biased mutation rates have not been well studied in this group. Here we analyze a population genomic dataset from rattlesnakes to quantify genetic variation within and genetic divergence between species. We use a new method for unbiased estimation of population genetic summary statistics to compare variation between the Z chromosome and autosomes and to calculate net nucleotide differentiation between species. We find evidence for a 2.03-fold greater mutation rate in male rattlesnakes relative to females, corresponding to an average μZ/μA ratio of 1.1. Our results from snakes are quantitatively similar to birds, suggesting that male-biased mutation rates may be a common feature across vertebrate lineages with ZW sex determination.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | | | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
5
|
Hayes K, Barton HJ, Zeng K. A Study of Faster-Z Evolution in the Great Tit (Parus major). Genome Biol Evol 2021; 12:210-222. [PMID: 32119100 PMCID: PMC7144363 DOI: 10.1093/gbe/evaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Sex chromosomes contribute substantially to key evolutionary processes such as speciation and adaptation. Several theories suggest that evolution could occur more rapidly on sex chromosomes, but currently our understanding of whether and how this occurs is limited. Here, we present an analysis of the great tit (Parus major) genome, aiming to detect signals of faster-Z evolution. We find mixed evidence of faster divergence on the Z chromosome than autosomes, with significantly higher divergence being found in ancestral repeats, but not at 4- or 0-fold degenerate sites. Interestingly, some 4-fold sites appear to be selectively constrained, which may mislead analyses that use these sites as the neutral reference (e.g., dN/dS). Consistent with other studies in birds, the mutation rate is significantly higher in males than females, and the long-term Z-to-autosome effective population size ratio is only 0.5, significantly lower than the expected value of 0.75. These are indicative of male-driven evolution and high variance in male reproductive success, respectively. We find no evidence for an increased efficacy of positive selection on the Z chromosome. In contrast, the Z chromosome in great tits appears to be affected by increased genetic drift, which has led to detectable signals of weakened intensity of purifying selection. These results provide further evidence that the Z chromosome often has a low effective population size, and that this has important consequences for its evolution. They also highlight the importance of considering multiple factors that can affect the rate of evolution and effective population sizes of sex chromosomes.
Collapse
Affiliation(s)
- Kai Hayes
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom.,Organismal and Evolutionary Biology Research Program, University of Helsinki, Finland
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| |
Collapse
|
6
|
Llopart A. Faster‐X evolution of gene expression is driven by recessive adaptive
cis
‐regulatory variation in
Drosophila. Mol Ecol 2018; 27:3811-3821. [DOI: 10.1111/mec.14708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ana Llopart
- Department of Biology The University of Iowa Iowa City Iowa
- Interdisciplinary Graduate Program in Genetics The University of Iowa Iowa City Iowa
| |
Collapse
|
7
|
Charlesworth B, Campos JL, Jackson BC. Faster-X evolution: Theory and evidence from Drosophila. Mol Ecol 2018; 27:3753-3771. [PMID: 29431881 DOI: 10.1111/mec.14534] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Benjamin C Jackson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Ishishita S, Matsuda Y. Interspecific hybrids of dwarf hamsters and Phasianidae birds as animal models for studying the genetic and developmental basis of hybrid incompatibility. Genes Genet Syst 2016; 91:63-75. [PMID: 27628130 DOI: 10.1266/ggs.16-00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hybrid incompatibility is important in speciation as it prevents gene flow between closely related populations. Reduced fitness from hybrid incompatibility may also reinforce prezygotic reproductive isolation between sympatric populations. However, the genetic and developmental basis of hybrid incompatibility in higher vertebrates remains poorly understood. Mammals and birds, both amniotes, have similar developmental processes, but marked differences in development such as the XY/ZW sex determination systems and the presence or absence of genomic imprinting. Here, we review the sterile phenotype of hybrids between the Phodopus dwarf hamsters P. campbelli and P. sungorus, and the inviable phenotype of hybrids between two birds of the family Phasianidae, chicken (Gallus gallus domesticus) and Japanese quail (Coturnix japonica). We propose hypotheses for developmental defects that are associated with these hybrid incompatibilities. In addition, we discuss the genetic and developmental basis for these defects in conjunction with recent findings from mouse and avian models of genetics, reproductive biology and genomics. We suggest that these hybrids are ideal animal models for studying the genetic and developmental basis of hybrid incompatibility in amniotes.
Collapse
Affiliation(s)
- Satoshi Ishishita
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University
| | | |
Collapse
|
9
|
Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA. Z chromosome divergence, polymorphism and relative effective population size in a genus of lekking birds. Heredity (Edinb) 2015; 115:452-9. [PMID: 26014526 PMCID: PMC4611240 DOI: 10.1038/hdy.2015.46] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023] Open
Abstract
Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The π(Z)/π(A) ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that N(eZ)/N(eA) in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.
Collapse
Affiliation(s)
- S J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - R S Cornman
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - K L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - J A Fike
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| |
Collapse
|
10
|
Llopart A. Parallel faster-X evolution of gene expression and protein sequences in Drosophila: beyond differences in expression properties and protein interactions. PLoS One 2015; 10:e0116829. [PMID: 25789611 PMCID: PMC4366066 DOI: 10.1371/journal.pone.0116829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022] Open
Abstract
Population genetics models predict that the X (or Z) chromosome will evolve at faster rates than the autosomes in XY (or ZW) systems. Studies of molecular evolution using large datasets in multiple species have provided evidence supporting this faster-X effect in protein-coding sequences and, more recently, in transcriptomes. However, X-linked and autosomal genes differ significantly in important properties besides hemizygosity in males, including gene expression levels, tissue specificity in gene expression, and the number of interactions in which they are involved (i.e., protein-protein or DNA-protein interactions). Most important, these properties are known to correlate with rates of evolution, which raises the question of whether differences between the X chromosome and autosomes in gene properties, rather than hemizygosity, are sufficient to explain faster-X evolution. Here I investigate this possibility using whole genome sequences and transcriptomes of Drosophila yakuba and D. santomea and show that this is not the case. Additional factors are needed to account for faster-X evolution of both gene expression and protein-coding sequences beyond differences in gene properties, likely a higher incidence of positive selection in combination with the accumulation of weakly deleterious mutations.
Collapse
Affiliation(s)
- Ana Llopart
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Avila V, Marion de Procé S, Campos JL, Borthwick H, Charlesworth B, Betancourt AJ. Faster-X effects in two Drosophila lineages. Genome Biol Evol 2014; 6:2968-82. [PMID: 25323954 PMCID: PMC4224355 DOI: 10.1093/gbe/evu229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Under certain circumstances, X-linked loci are expected to experience more adaptive substitutions than similar autosomal loci. To look for evidence of faster-X evolution, we analyzed the evolutionary rates of coding sequences in two sets of Drosophila species, the melanogaster and pseudoobscura clades, using whole-genome sequences. One of these, the pseudoobscura clade, contains a centric fusion between the ancestral X chromosome and the autosomal arm homologous to 3L in D. melanogaster. This offers an opportunity to study the same loci in both an X-linked and an autosomal context, and to compare these loci with those that are only X-linked or only autosomal. We therefore investigated these clades for evidence of faster-X evolution with respect to nonsynonymous substitutions, finding mixed results. Overall, there was consistent evidence for a faster-X effect in the melanogaster clade, but not in the pseudoobscura clade, except for the comparison between D. pseudoobscura and its close relative, Drosophila persimilis. An analysis of polymorphism data on a set of genes from D. pseudoobscura that evolve rapidly with respect to their protein sequences revealed no evidence for a faster-X effect with respect to adaptive protein sequence evolution; their rapid evolution is instead largely attributable to lower selective constraints. Faster-X evolution in the melanogaster clade was not related to male-biased gene expression; surprisingly, however, female-biased genes showed evidence for faster-X effects, perhaps due to their sexually antagonistic effects in males.
Collapse
Affiliation(s)
- Victoria Avila
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: Institute of Biological, Environmental and Rural Sciences, Abertystwyth University, Aberystwyth, United Kingdom
| | - Sophie Marion de Procé
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - José L Campos
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Helen Borthwick
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Brian Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Andrea J Betancourt
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: Institut for Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
13
|
Turelli M, Lipkowitz JR, Brandvain Y. On the Coyne and Orr-igin of species: effects of intrinsic postzygotic isolation, ecological differentiation, x chromosome size, and sympatry on Drosophila speciation. Evolution 2014; 68:1176-87. [PMID: 24325145 DOI: 10.1111/evo.12330] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
Coyne and Orr found that mating discrimination (premating isolation) evolves much faster between sympatric than allopatric Drosophila species pairs. Their meta-analyses established that this pattern, expected under reinforcement, is common and that Haldane's rule is ubiquitous in Drosophila species divergence. We examine three possible contributors to the reinforcement pattern: intrinsic postzygotic isolation, dichotomized as to whether hybrid males show complete inviability/sterility; host-plant divergence, as a surrogate for extrinsic postzygotic isolation; and X chromosome size, whether roughly 20% or 40% of the genome is X-linked. We focus on "young" species pairs with overlapping ranges, contrasted with allopatric pairs. Using alternative criteria for "sympatry" and tests that compare either level of prezygotic isolation in sympatry or frequency of sympatry, we find no statistically significant effects associated with X chromosome size or our coarse quantifications of intrinsic postzygotic isolation or ecological differentiation. Although sympatric speciation seems very rare in animals, the pervasiveness of the reinforcement pattern and the commonness of range overlap for close relatives indicate that speciation in Drosophila is often not purely allopatric. It remains to determine whether increased premating isolation with sympatry results from secondary contact versus parapatric speciation and what drives this pattern.
Collapse
Affiliation(s)
- Michael Turelli
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, 95616.
| | | | | |
Collapse
|
14
|
Jovelin R. Pleiotropic constraints, expression level, and the evolution of miRNA sequences. J Mol Evol 2013; 77:206-20. [PMID: 24100521 DOI: 10.1007/s00239-013-9588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Post-transcriptional gene regulation mediated by microRNAs (miRNAs) plays critical roles during development by modulating gene expression and conferring robustness to stochastic errors. Phylogenetic analyses suggest that miRNA acquisition could play a role in phenotypic innovation. Moreover, miRNA-induced regulation strongly impacts genome evolution, increasing selective constraints on 3'UTRs, protein sequences, and expression level divergence. Thus, it is essential to understand the factors governing sequence evolution for this important class of regulatory molecules. Investigation of the patterns of molecular evolution at miRNA loci have been limited in Caenorhabditis elegans because of the lack of a close outgroup. Instead, I used Caenorhabditis briggsae as the focus point of this study because of its close relationship to Caenorhabditis sp. 9. I also corroborated the patterns of sequence evolution in Caenorhabditis using published orthologous relationships among miRNAs in Drosophila. In nematodes and in flies, miRNA sequence divergence is not influenced by the genomic neighborhood (i.e., intronic or intergenic) but is nevertheless affected by the genomic context because X-linked miRNAs evolve faster than autosomal miRNAs. However, this effect of chromosomal linkage can be explained by differential expression levels rather than a fast-X effect. The results presented here support a universal negative relationship between rates of molecular evolution and expression level, and suggest that mutations in highly expressed miRNAs are more likely to be deleterious because they potentially affect a larger number of target genes. Finally, I show that many single family member miRNAs evolve faster than miRNAs from multigene families and have limited functional scope, suggesting that they are not strongly integrated in gene regulatory networks.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada,
| |
Collapse
|
15
|
Meisel RP, Connallon T. The faster-X effect: integrating theory and data. Trends Genet 2013; 29:537-44. [PMID: 23790324 PMCID: PMC3755111 DOI: 10.1016/j.tig.2013.05.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
Abstract
Population genetics theory predicts that X (or Z) chromosomes could play disproportionate roles in speciation and evolutionary divergence, and recent genome-wide analyses have identified situations in which X or Z-linked divergence exceeds that on the autosomes (the so-called 'faster-X effect'). Here, we summarize the current state of both the theory and data surrounding the study of faster-X evolution. Our survey indicates that the faster-X effect is pervasive across a taxonomically diverse array of evolutionary lineages. These patterns could be informative of the dominance or recessivity of beneficial mutations and the nature of genetic variation acted upon by natural selection. We also identify several aspects of disagreement between these empirical results and the population genetic models used to interpret them. However, there are clearly delineated aspects of the problem for which additional modeling and collection of genomic data will address these discrepancies and provide novel insights into the population genetics of adaptation.
Collapse
|
16
|
van der Nest MA, Steenkamp ET, Wilken MP, Stenlid J, Wingfield MJ, Wingfield BD, Slippers B. Mutualism and asexual reproduction influence recognition genes in a fungal symbiont. Fungal Biol 2013; 117:439-50. [PMID: 23809654 DOI: 10.1016/j.funbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 04/23/2013] [Accepted: 05/01/2013] [Indexed: 11/20/2022]
Abstract
Mutualism between microbes and insects is common and alignment of the reproductive interests of microbial symbionts with this lifestyle typically involves clonal reproduction and vertical transmission by insect partners. Here the Amylostereum fungus-Sirex woodwasp mutualism was used to consider whether their prolonged association and predominance of asexuality have affected the mating system of the fungal partner. Nucleotide information for the pheromone receptor gene rab1, as well as the translation elongation factor 1α gene and ribosomal RNA internal transcribed spacer region were utilized. The identification of rab1 alleles in Amylostereum chailletii and Amylostereum areolatum populations revealed that this gene is more polymorphic than the other two regions, although the diversity of all three regions was lower than what has been observed in free-living Agaricomycetes. Our data suggest that suppressed recombination might be implicated in the diversification of rab1, while no evidence of balancing selection was detected. We also detected positive selection at only two codons, suggesting that purifying selection is important for the evolution of rab1. The symbiotic relationship with their insect partners has therefore influenced the diversity of this gene and influenced the manner in which selection drives and maintains this diversity in A. areolatum and A. chailletii.
Collapse
MESH Headings
- Animals
- Basidiomycota/genetics
- Basidiomycota/physiology
- Cluster Analysis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Genes, Mating Type, Fungal
- Hymenoptera/microbiology
- Molecular Sequence Data
- Peptide Elongation Factor 1/genetics
- Polymorphism, Genetic
- Receptors, Pheromone/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Symbiosis
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute-FABI, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | |
Collapse
|
17
|
Kayserili MA, Gerrard DT, Tomancak P, Kalinka AT. An excess of gene expression divergence on the X chromosome in Drosophila embryos: implications for the faster-X hypothesis. PLoS Genet 2012; 8:e1003200. [PMID: 23300473 PMCID: PMC3531489 DOI: 10.1371/journal.pgen.1003200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/19/2012] [Indexed: 12/26/2022] Open
Abstract
The X chromosome is present as a single copy in the heterogametic sex, and this hemizygosity is expected to drive unusual patterns of evolution on the X relative to the autosomes. For example, the hemizgosity of the X may lead to a lower chromosomal effective population size compared to the autosomes, suggesting that the X might be more strongly affected by genetic drift. However, the X may also experience stronger positive selection than the autosomes, because recessive beneficial mutations will be more visible to selection on the X where they will spend less time being masked by the dominant, less beneficial allele--a proposal known as the faster-X hypothesis. Thus, empirical studies demonstrating increased genetic divergence on the X chromosome could be indicative of either adaptive or non-adaptive evolution. We measured gene expression in Drosophila species and in D. melanogaster inbred strains for both embryos and adults. In the embryos we found that expression divergence is on average more than 20% higher for genes on the X chromosome relative to the autosomes; but in contrast, in the inbred strains, gene expression variation is significantly lower on the X chromosome. Furthermore, expression divergence of genes on Muller's D element is significantly greater along the branch leading to the obscura sub-group, in which this element segregates as a neo-X chromosome. In the adults, divergence is greatest on the X chromosome for males, but not for females, yet in both sexes inbred strains harbour the lowest level of gene expression variation on the X chromosome. We consider different explanations for our results and conclude that they are most consistent within the framework of the faster-X hypothesis.
Collapse
Affiliation(s)
- Melek A. Kayserili
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dave T. Gerrard
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Pavel Tomancak
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alex T. Kalinka
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
18
|
Campos JL, Zeng K, Parker DJ, Charlesworth B, Haddrill PR. Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster. Mol Biol Evol 2012. [PMID: 23204387 PMCID: PMC3603305 DOI: 10.1093/molbev/mss222] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Codon usage bias (CUB) in Drosophila is higher for X-linked genes than for autosomal genes. One possible explanation is that the higher effective recombination rate for genes on the X chromosome compared with the autosomes reduces their susceptibility to Hill–Robertson effects, and thus enhances the efficacy of selection on codon usage. The genome sequence of D. melanogaster was used to test this hypothesis. Contrary to expectation, it was found that, after correcting for the effective recombination rate, CUB remained higher on the X than on the autosomes. In contrast, an analysis of polymorphism data from a Rwandan population showed that mean nucleotide site diversity at 4-fold degenerate sites for genes on the X is approximately three-quarters of the autosomal value after correcting for the effective recombination rate, compared with approximate equality before correction. In addition, these data show that selection for preferred versus unpreferred synonymous variants is stronger on the X than the autosomes, which accounts for the higher CUB of genes on the X chromosome. This difference in the strength of selection does not appear to reflect the effects of dominance of mutations affecting codon usage, differences in gene expression levels between X and autosomes, or differences in mutational bias. Its cause therefore remains unexplained. The stronger selection on CUB on the X chromosome leads to a lower rate of synonymous site divergence compared with the autosomes; this will cause a stronger upward bias for X than A in estimates of the proportion of nonsynonymous mutations fixed by positive selection, for methods based on the McDonald–Kreitman test.
Collapse
Affiliation(s)
- Jose L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
19
|
Campos JL, Charlesworth B, Haddrill PR. Molecular evolution in nonrecombining regions of the Drosophila melanogaster genome. Genome Biol Evol 2012; 4:278-88. [PMID: 22275518 PMCID: PMC3318434 DOI: 10.1093/gbe/evs010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We study the evolutionary effects of reduced recombination on the Drosophila melanogaster genome, analyzing more than 200 new genes that lack crossing-over and employing a novel orthology search among species of the melanogaster subgroup. These genes are located in the heterochromatin of chromosomes other than the dot (fourth) chromosome. Noncrossover regions of the genome all exhibited an elevated level of evolutionary divergence from D. yakuba at nonsynonymous sites, lower codon usage bias, lower GC content in coding and noncoding regions, and longer introns. Levels of gene expression are similar for genes in regions with and without crossing-over, which rules out the possibility that the reduced level of adaptation that we detect is caused by relaxed selection due to lower levels of gene expression in the heterochromatin. The patterns observed are consistent with a reduction in the efficacy of selection in all regions of the genome of D. melanogaster that lack crossing-over, as a result of the effects of enhanced Hill-Robertson interference. However, we also detected differences among nonrecombining locations: The X chromosome seems to exhibit the weakest effects, whereas the fourth chromosome and the heterochromatic genes on the autosomes located most proximal to the centromere showed the largest effects. However, signatures of selection on both nonsynonymous mutations and on codon usage persist in all heterochromatic regions.
Collapse
Affiliation(s)
- José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| | | | | |
Collapse
|
20
|
Inference of mutation parameters and selective constraint in mammalian coding sequences by approximate Bayesian computation. Genetics 2011; 187:1153-61. [PMID: 21288873 DOI: 10.1534/genetics.110.124073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We develop an inference method that uses approximate Bayesian computation (ABC) to simultaneously estimate mutational parameters and selective constraint on the basis of nucleotide divergence for protein-coding genes between pairs of species. Our simulations explicitly model CpG hypermutability and transition vs. transversion mutational biases along with negative and positive selection operating on synonymous and nonsynonymous sites. We evaluate the method by simulations in which true mean parameter values are known and show that it produces reasonably unbiased parameter estimates as long as sequences are not too short and sequence divergence is not too low. We show that the use of quadratic regression within ABC offers an improvement over linear regression, but that weighted regression has little impact on the efficiency of the procedure. We apply the method to estimate mutational and selective constraint parameters in data sets of protein-coding genes extracted from the genome sequences of primates, murids, and carnivores. Estimates of CpG hypermutability are substantially higher in primates than murids and carnivores. Nonsynonymous site selective constraint is substantially higher in murids and carnivores than primates, and autosomal nonsynonymous constraint is higher than X-chromsome constraint in all taxa. We detect significant selective constraint at synonymous sites in primates, carnivores, and murid rodents. Synonymous site selective constraint is weakest in murids, a surprising result, considering that murid effective population sizes are likely to be considerably higher than the other two taxa.
Collapse
|
21
|
Haddrill PR, Zeng K, Charlesworth B. Determinants of synonymous and nonsynonymous variability in three species of Drosophila. Mol Biol Evol 2010; 28:1731-43. [PMID: 21191087 DOI: 10.1093/molbev/msq354] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We estimated the intensity of selection on preferred codons in Drosophila pseudoobscura and D. miranda at X-linked and autosomal loci, using a published data set on sequence variability at 67 loci, by means of an improved method that takes account of demographic effects. We found evidence for stronger selection at X-linked loci, consistent with their higher levels of codon usage bias. The estimates of the strength of selection and mutational bias in favor of unpreferred codons were similar to those found in other species, after taking into account the fact that D. pseudoobscura showed evidence for a recent expansion in population size. We examined correlates of synonymous and nonsynonymous diversity in these species and found no evidence for effects of recurrent selective sweeps on nonsynonymous mutations, which is probably because this set of genes have much higher than average levels of selective constraints. There was evidence for correlated effects of levels of selective constraints on protein sequences and on codon usage, as expected under models of selection for translational accuracy. Our analysis of a published data set on D. melanogaster provided evidence for the effects of selective sweeps of nonsynonymous mutations on linked synonymous diversity, but only in the subset of loci that experienced the highest rates of nonsynonymous substitutions (about one-quarter of the total) and not at more slowly evolving loci. Our correlational analysis of this data set suggested that both selective constraints on protein sequences and recurrent selective sweeps affect the overall level of codon usage.
Collapse
Affiliation(s)
- Penelope R Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
22
|
Estimating the parameters of selection on nonsynonymous mutations in Drosophila pseudoobscura and D. miranda. Genetics 2010; 185:1381-96. [PMID: 20516497 DOI: 10.1534/genetics.110.117614] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the results of surveys of diversity in sets of >40 X-linked and autosomal loci in samples from natural populations of Drosophila miranda and D. pseudoobscura, together with their sequence divergence from D. affinis. Mean silent site diversity in D. miranda is approximately one-quarter of that in D. pseudoobscura; mean X-linked silent diversity is about three-quarters of that for the autosomes in both species. Estimates of the distribution of selection coefficients against heterozygous, deleterious nonsynonymous mutations from two different methods suggest a wide distribution, with coefficients of variation greater than one, and with the average segregating amino acid mutation being subject to only very weak selection. Only a small fraction of new amino acid mutations behave as effectively neutral, however. A large fraction of amino acid differences between D. pseudoobscura and D. affinis appear to have been fixed by positive natural selection, using three different methods of estimation; estimates between D. miranda and D. affinis are more equivocal. Sources of bias in the estimates, especially those arising from selection on synonymous mutations and from the choice of genes, are discussed and corrections for these applied. Overall, the results show that both purifying selection and positive selection on nonsynonymous mutations are pervasive.
Collapse
|
23
|
Abstract
The population genetic study of advantageous mutations has lagged behind that of deleterious and neutral mutations. But over the past two decades, a number of significant developments, both theoretical and empirical, have occurred. Here, I review two of these developments: the attempt to determine the distribution of fitness effects among beneficial mutations and the attempt to determine their average dominance. Considering both theory and data, I conclude that, while considerable theoretical progress has been made, we still lack sufficient data to draw confident conclusions about the distribution of effects or the dominance of beneficial mutations.
Collapse
Affiliation(s)
- H Allen Orr
- Department of Biology, University of Rochester, , Rochester, NY 14627, USA.
| |
Collapse
|
24
|
Santos J, Serra L, Solé E, Pascual M. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species. Chromosome Res 2010; 18:213-26. [PMID: 20198419 DOI: 10.1007/s10577-010-9112-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 12/24/2022]
Abstract
Microsatellites are highly polymorphic markers that are distributed through all the genome being more abundant in non-coding regions. Whether they are neutral or under selection, these markers if localized can be used as co-dominant molecular markers to explore the dynamics of the evolutionary processes. Their cytological localization can allow identifying genes under selection, inferring recombination from a genomic point of view, or screening for the genomic reorganizations occurring during the evolution of a lineage, among others. In this paper, we report for the first time the localization of microsatellite loci by fluorescent in situ hybridization on Drosophila polytene chromosomes. In Drosophila subobscura, 72 dinucleotide microsatellite loci were localized by fluorescent in situ hybridization yielding unique hybridization signals. In the sex chromosome, microsatellite distribution was not uniform and its density was higher than in autosomes. We identified homologous segments to the sequence flanking the microsatellite loci by browsing the genome sequence of Drosophila pseudoobscura and Drosophila melanogaster. Their localization supports the conservation of Muller's chromosomal elements among Drosophila species and the existence of multiple intrachromosomal rearrangements within each evolutionary lineage. Finally, the lack of microsatellite repeats in the homologous D. melanogaster sequences suggests convergent evolution for high microsatellite density in the distal part of the X chromosome.
Collapse
Affiliation(s)
- Josiane Santos
- Departament de Genètica, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Mank JE, Vicoso B, Berlin S, Charlesworth B. EFFECTIVE POPULATION SIZE AND THE FASTER-X EFFECT: EMPIRICAL RESULTS AND THEIR INTERPRETATION. Evolution 2010; 64:663-74. [DOI: 10.1111/j.1558-5646.2009.00853.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Singh ND, Larracuente AM, Sackton TB, Clark AG. Comparative Genomics on the Drosophila Phylogenetic Tree. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the sequencing of 12 complete euchromatic Drosophila genomes, the genus Drosophila is a leading model for comparative genomics. In this review, we discuss the novel insights into evolutionary processes afforded by the newly available genomic sequences when placed in the context of the phylogeny. We focus on three levels: insights into whole-genome content, such as changes in genome size and content across the phylogeny; insights into large-scale patterns of divergence and conservation, such as selective constraints on genes and chromosome-level evolution of sex chromosomes; and insights into finer-scale processes in individual lineages and genes, such as lineage-specific evolution in response to ecological context. As the field of comparative genomics is still young, we also discuss current challenges, such as the development of more sophisticated evolutionary models to capture nonequilibrium processes and the improvement of assembly and alignment algorithms to better capture uncertainty in the data.
Collapse
Affiliation(s)
- Nadia D. Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Amanda M. Larracuente
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Timothy B. Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
27
|
Mank JE, Nam K, Ellegren H. Faster-Z Evolution Is Predominantly Due to Genetic Drift. Mol Biol Evol 2009; 27:661-70. [DOI: 10.1093/molbev/msp282] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
28
|
Patterns of DNA-sequence divergence between Drosophila miranda and D. pseudoobscura. J Mol Evol 2009; 69:601-11. [PMID: 19859648 DOI: 10.1007/s00239-009-9298-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 10/07/2009] [Indexed: 12/22/2022]
Abstract
Contrary to the classical view, a large amount of non-coding DNA seems to be selectively constrained in Drosophila and other species. Here, using Drosophila miranda BAC sequences and the Drosophila pseudoobscura genome sequence, we aligned coding and non-coding sequences between D. pseudoobscura and D. miranda, and investigated their patterns of evolution. We found two patterns that have previously been observed in comparisons between Drosophila melanogaster and its relatives. First, there is a negative correlation between intron divergence and intron length, suggesting that longer non-coding sequences may contain more regulatory elements than shorter sequences. Our other main finding is a negative correlation between the rate of non-synonymous substitutions (d(N)) and codon usage bias (F(op)), showing that fast-evolving genes have a lower codon usage bias, consistent with strong positive selection interfering with weak selection for codon usage.
Collapse
|
29
|
Abstract
Current models of X-linked and autosomal evolutionary rates often assume that the effective population size of the X chromosome (N(eX)) is equal to three-quarters of the autosomal population size (N(eA)). However, polymorphism studies of Drosophila melanogaster and D. simulans suggest that there are often significant deviations from this value. We have computed fixation rates of beneficial and deleterious mutations at X-linked and autosomal sites when this occurs. We find that N(eX)/N(eA) is a crucial parameter for the rates of evolution of X-linked sites compared to autosomal sites. Faster-X evolution due to the fixation of beneficial mutations can occur under a much wider range of levels of dominance when N(eX)/N(eA) > (3)/(4). We also examined various parameters that are known to influence the rates of evolution at X-linked and autosomal sites, such as different mutation rates in males and females and mutations that are sexually antagonistic, to determine which cases can lead to faster-X evolution. We show that, when the rate of nonsynonymous evolution is normalized by the rate of neutral evolution, a sex difference in mutation rate has no influence on the conditions for faster-X evolution.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Institute of Evolutionary Biology, School of Biological Science, University of Edinburgh, United Kingdom
| | | |
Collapse
|