1
|
Chaúque BJM, da Silva TCB, Rott EB, Rott FB, Leite APMC, Benitez GB, Neuana NF, Goldim JR, Rott MB, Zanette RA. Effectiveness of phytoproducts against pathogenic free-living amoebae - A scoping and critical review paving the way toward plant-based pharmaceuticals. Fitoterapia 2025; 182:106404. [PMID: 39922391 DOI: 10.1016/j.fitote.2025.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Infections caused by free-living amoebae (FLA) have increased worldwide and are expected to worsen. The lack of drugs that are effective (especially against cysts), affordable, and safe to treat these infections exacerbates the concern. Plants present a promising source of bioactive compounds for developing effective drugs; however, the scientific literature on this topic has yet to be adequately synthesized. This work provides a critical scoping review summarizing the amoebicidal performance of plant-derived products and their potential for developing effective drugs to treat FLA infections. Out of 5889 articles retrieved from multiple databases, 119 articles were selected, from which data on 180 plant species belonging to 127 genera and 62 families were extracted. The extracts, essential oils, and compounds from these plants exhibited a diverse range of potency against cysts and trophozoites. Among the compounds studied, periglaucine A, kolavenic acid, and (+)-elatol are promising cysticidal drug candidates due to their high potency, as well as their known low toxicity to non-target cells. Tovophillin A, gartinin, 8-deoxygartinin, garcinone E, 9-hydroxycalabaxanthone, γ-mangostin, and borneol also exhibit high cysticidal potency, but their selectivity profile is unknown. Resveratrol, rosmarinic acid, β-amyrin, and vanillic acid stand out for their high potency against trophozoites and low toxicity to mammalian cells. Another group of compounds with similarly high trophocidal potency includes (-)-epicatechin, (-)-epigallocatechin, apigenin, costunolide, demethoxycurcumin, kaempferol, methyl-β-orcinolcarboxylate, sakuraetin, (+)-elatol, debromolaurinterol, luteolin, (-)-rogiolol, cystomexicone B, epigallocatechin gallate, quercetin, and α-bisabolol. These compounds are priority candidates for further studies on in vivo efficacy, safety, pharmacokinetics, and pharmacodynamics.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique.
| | - Thaisla Cristiane Borella da Silva
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Felipe Brittes Rott
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | - Neuana Fernando Neuana
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique; Department of Mechanical and Materials Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - José Roberto Goldim
- Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil.
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Mishra A, Kumar S, Singh A. Biosynthesis and characterization of Ocimum sanctum green silver nanoparticles and unravelling their enhanced anti-filarial activity through a HRAMS proteomics approach. RSC Adv 2024; 14:5893-5906. [PMID: 38362069 PMCID: PMC10866198 DOI: 10.1039/d3ra08702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
The available anti-filarial medications are largely ineffective against adult filarial worms. Also, these drugs have several drawbacks such as toxicity and development of resistance owing to long-term usage. Green nanomedicine may offer better solutions for Lymphatic Filariasis treatment due to its tiny size, biocompatibility, and better penetration at considerably lower costs with higher therapeutic efficacy. In the present study, Ocimum sanctum silver nanoparticles (OSAgNPs) were bio-synthesized and their anti-filarial efficacy was evaluated against adult filarial parasites. The green nanoparticles were characterized by UV-VIS spectroscopy, XRD, FTIR, SEM, and TEM analysis. The OSAgNPs significantly affected the motility and viability of adult Setaria cervi parasites after 4 h of incubation at concentrations higher than 0.5 μg ml-1. Proteomics analysis by high resolution accurate mass spectrometry revealed that 213 proteins were differentially expressed following OSAgNP treatment. Mostly these DEPs belonged to the many biochemical and molecular pathways of parasites such as muscle proteins, antioxidant proteins, heat shock proteins, signal recognition proteins, and energy metabolism-related proteins. Undoubtedly, this study will open new avenues for the development of novel anti-filarial drugs based on green nanoparticles.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi 221005 U.P. India
| | - Sunil Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi 221005 U.P. India
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi 221005 U.P. India
| |
Collapse
|
3
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|
4
|
Shoeib NA, Al-Madboly LA, Ragab AE. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt. PHARMACEUTICAL BIOLOGY 2022; 60:1969-1980. [PMID: 36226757 PMCID: PMC9578474 DOI: 10.1080/13880209.2022.2127791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Some studies reported the chemical content and antimicrobial properties of Ocimum basilicum L. (Lamiaceae), relevant to the ecological variations in some areas of Egypt and other countries, yet no research was conducted on the plant cultivated in the central delta region of Egypt. Also, no previous data reported on inhibition of β-lactamases by O. basilicum. OBJECTIVE To assess β-lactamases inhibition by O. basilicum extracts and the individual constituents. MATERIALS AND METHODS Dried aerial parts of O. basilicum were extracted by hydrodistillation for preparation of essential oil and by methanol for non-volatile constituents. Essential oil content and the methanol extract were analysed by GC-MS and UPLC-PDA-MS/MS, respectively. Methyl cinnamate was isolated and analysed by NMR. Broth microdilution method was used to investigate the antimicrobial against resistant clinical isolates of Escherichia coli identified by double disc synergy, combination disc tests and PCR. The most active oil content was further tested with a nitrocefin kit for β-lactamase inhibition and investigated by docking. RESULTS O. basilicum was found to contain methyl cinnamate as the major content of the essential oil. More interestingly, methyl cinnamate inhibited ESBL β-lactamases of the type CTX-M. The in vitro IC50 using nitrocefin kit was 11.6 µg/mL vs. 8.1 µg/mL for clavulanic acid as a standard β-lactamase inhibitor. DISCUSSION AND CONCLUSIONS This is the first study to report the inhibitory activity of O. basilicum oil and methyl cinnamate against β-lactamase-producing bacteria. The results indicate that methyl cinnamate could be a potential alternative for β-lactamase inhibition.
Collapse
Affiliation(s)
| | | | - Amany E. Ragab
- Department of Pharmacognosy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Alimi D, Hajri A, Jallouli S, Sebai H. Acaricidal and anthelmintic efficacy of Ocimum basilicum essential oil and its major constituents estragole and linalool, with insights on acetylcholinesterase inhibition. Vet Parasitol 2022; 309:109743. [PMID: 35714433 DOI: 10.1016/j.vetpar.2022.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
The present study evaluated the acaricidal and anthelmintic action of Ocimum basilicum essential oil and its main components against ticks and helminth parasites as well as to relate these activities to acetylcholinesterase inhibition. The in vitro acaricidal activity against Hyalomma scupense was evaluated by Adult Immersion Test (AIT) and Larval Packet Test (LPT), while the in vivo nematocidal potential was assessed in laboratory mice infected with Heligmosomoides polygyrus using fecal egg count reduction (FECR) and total worm count reduction (TWCR). Chemical analyzes were performed by gas chromatography coupled to mass spectrometry (GC-MS). Estragole (80.87%) and linalool (16.12%) were the major compounds detected in O. basilicum essential oil. In the AIT assay for H. scupense tick, LC50 of estragole, O. basilicum oil and linalool were 0.73, 0.81 and 0.97 mg/mL, respectively. In LPT, estragole, linalool and essential oil showed LC50 of 0.22, 1.11 and 1.19 mg/mL, respectively. Against He. polygyrus, the highest activity was observed with estragole administered at 100 mg/kg body weight (bwt), which resulted in a FECR of 90.86% and a TWCR of 82.91%. The O. basilicum essential oil, estragole and linalool inhibited the enzyme acetylcholinesterase (AChE) extracted from both parasites species. Estragole was found the most active AChE inhibitor with IC50 of 0.176 mg/mL for H. scupense and IC50 of 0.138 mg/mL for He. polygyrus larvae. The results of the present study pointed out the importance of the traditional use of O. basilicum as an eco-friendly alternative against endo and ectoparasites. In vivo trials should also be conducted to confirm the above-mentioned activities and to assure the safe use of natural plants.
Collapse
Affiliation(s)
- Dhouha Alimi
- Laboratory of Functional Physiology and Valorization of Bio-resources (UR17ES27), Higher Institute of Biotechnology of Beja, University of Jendouba, Habib Bourguiba Street, Box 382, 9000 Beja, Tunisia.
| | - Azhar Hajri
- Laboratory of Functional Physiology and Valorization of Bio-resources (UR17ES27), Higher Institute of Biotechnology of Beja, University of Jendouba, Habib Bourguiba Street, Box 382, 9000 Beja, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, Box 901, Hammam-Lif 2050, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources (UR17ES27), Higher Institute of Biotechnology of Beja, University of Jendouba, Habib Bourguiba Street, Box 382, 9000 Beja, Tunisia
| |
Collapse
|
6
|
Wang HV, Pickett LJ, Faraone N. Repellent and acaricidal activities of basil (Ocimum basilicum) essential oils and rock dust against Ixodes scapularis and Dermacentor variabilis ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:583-598. [PMID: 35230583 DOI: 10.1007/s10493-022-00705-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Repellent and acaricidal activity of essential oils extracted from three varieties of basil (Ocimum basilicum L.) were evaluated on blacklegged ticks (Ixodes scapularis Say) and American dog ticks (Dermacentor variabilis Say) in laboratory conditions. Essential oils were extracted and characterized through gas chromatography-mass spectrometry, and tested at different concentrations for long-term repellent activity using horizontal bioassays. In addition, basil essential oils were combined with an inert material (i.e., granite rock dust) with known insecticidal and miticidal properties to assess acaricidal activities against adult ticks. Among the tested basil varieties, var. Jolina essential oil at 15% vol/vol concentration repelled 96% of tested ticks up to 2 h post-treatment. The EC50 for I. scapularis nymphs was 4.65% vol/vol (95% confidence interval: 4.73-4.57). In acaricidal tests, the combination of essential oil from var. Aroma 2 at 10% wt/wt with rock dust resulted in 100% tick mortality after only 24 h post-exposure, with a LD50 of 3.48% wt/wt (95% CI 4.05-2.91) for freshly prepared treatment tested on I. scapularis adults. The most common compounds detected in basil essential oils by GC-MS were linalool (52.2% in var. Nu Far, 48.2% in Aroma 2, 43.9% in Jolina), sabinene (6.71% in Nu Far, 8.99% in Aroma 2, 8.11% in Jolina), eugenol (11.2% in Jolina, 8.71% in Aroma 2), and estragole (18.2% in Nu Far). The use of essential oils alone and in combination with rock dust provides an innovative and environmentally friendly approach for managing ticks and inhibiting vector-borne disease transmission.
Collapse
Affiliation(s)
- Haozhe V Wang
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Laura J Pickett
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | | |
Collapse
|