1
|
Restrepo CM, Llanes A, Lleonart R. Use of AFLP for the study of eukaryotic pathogens affecting humans. INFECTION GENETICS AND EVOLUTION 2017; 63:360-369. [PMID: 28935612 DOI: 10.1016/j.meegid.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/29/2022]
Abstract
Amplified fragment length polymorphism (AFLP) is a genotyping technique based on PCR amplification of specific restriction fragments from a particular genome. The methodology has been extensively used in plant biology to solve a variety of scientific questions, including taxonomy, molecular epidemiology, systematics, population genetics, among many others. The AFLP share advantages and disadvantages with other types of molecular markers, being particularly useful in organisms with no previous DNA sequence knowledge. In eukaryotic pathogens, the technique has not been extensively used, although it has the potential to solve many important issues as it allows the simultaneous examination of hundreds or even thousands of polymorphic sites in the genome of the organism. Here we describe the main applications published on the use of AFLP in eukaryotic pathogens, with emphasis in species of the groups fungi, protozoa and helminths, and discuss the role of this methodology in the context of new techniques derived from the advances of the next generation sequencing.
Collapse
Affiliation(s)
- Carlos M Restrepo
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India..
| | - Alejandro Llanes
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Ricardo Lleonart
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama..
| |
Collapse
|
2
|
Simo G, Mbida JAM, Eyenga VE, Asonganyi T, Njiokou F, Grébaut P. Challenges towards the elimination of Human African Trypanosomiasis in the sleeping sickness focus of Campo in southern Cameroon. Parasit Vectors 2014; 7:374. [PMID: 25129168 PMCID: PMC4262263 DOI: 10.1186/1756-3305-7-374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/27/2014] [Indexed: 11/29/2022] Open
Abstract
The sleeping sickness focus of Campo lies along the Atlantic coast and extends along the Ntem River, which constitutes the Cameroonian and Equatorial Guinean border. It is a hypo-endemic focus with the disease prevalence varying from 0.3 to 0.86% during the last few decades. Investigations on animal reservoirs revealed a prevalence of Trypanosoma brucei gambiense of 0.6% in wild animals and 4.83% in domestic animals of this focus. From 2001 to 2012, about 19 931 tsetse were collected in this focus and five tsetse species including Glossina palpalis palpalis, G. pallicera, G. nigrofusca, G. tabaniformis and G. caliginea were identified. The analysis of blood meals of these flies showed that they feed on human, pig, goat, sheep, and wild animals such as antelope, duiker, wild pig, turtle and snake. The percentage of blood meals taken on these hosts varies according to sampling periods. For instance, 6.8% of blood meals from pig were reported in 2004 and 22% in 2008. This variation is subjected to considerable evolutions because the Campo HAT focus is submitted to socio-economic mutations including the reopening of a new wood company, the construction of autonomous port at "Kribi" as well as the dam at "Memve ele". These activities will bring more that 3000 inhabitants around Campo and induce the deforestation for the implementation of farmlands as well as breeding of domestic animals. Such mutations have impacts on the transmission and the epidemiology of sleeping sickness due to the modification of the fauna composition, the nutritional behavior of tsetse, the zoophilic/anthropophilic index. To achieve the elimination goal in the sleeping sickness focus of Campo, we report in this paper the current epidemiological situation of the disease, the research findings of the last decades notably on the population genetics of trypanosomes, the modifications of nutritional behavior of tsetse, the prevalence of T. b. gambiense in humans, domestic and wild animals. An overview on the types of mutations occurring in the region has been raised and a discussion on the strategies that can be implemented to achieve the elimination of the disease has been made.
Collapse
Affiliation(s)
- Gustave Simo
- />Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of science, University of Dschang, PO Box 67, Dschang, Cameroon
| | | | | | - Tazoacha Asonganyi
- />Faculty of Medicine and Biomedical Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Flobert Njiokou
- />Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Pascal Grébaut
- />Institut de Recherche pour le Développement, Unité Mixte de Recherche 177 IRD-CIRAD, Campus International de Baillarguet, TA A17/G, 34398 Montpellier Cedex 5, France
| |
Collapse
|
3
|
Simo G, Njitchouang GR, Njiokou F, Cuny G, Asonganyi T. Trypanosoma brucei s.l.: Microsatellite markers revealed high level of multiple genotypes in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus of Cameroon. Exp Parasitol 2011; 128:272-8. [PMID: 21376044 DOI: 10.1016/j.exppara.2011.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/25/2010] [Accepted: 02/21/2011] [Indexed: 11/27/2022]
Abstract
To identify Trypanosoma brucei genotypes which are potentially transmitted in a sleeping sickness focus, microsatellite markers were used to characterize T. brucei found in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus in Cameroon. For this study, two entomological surveys were performed during which 2685 tsetse flies were collected and 1596 (59.2%) were dissected. Microscopic examination revealed 1.19% (19/1596) mid-gut infections with trypanosomes; the PCR method identified 4.7% (75/1596) infections with T. brucei in the mid-guts. Of these 75 trypanosomes identified in the mid-guts, Trypanosoma brucei gambiense represented 0.81% (13/1596) of them, confirming the circulation of human infective parasite in the Fontem focus. Genetic characterization of the 75 T. brucei samples using five microsatellite markers revealed not only multiple T. brucei genotypes (47%), but also single genotypes (53%) in the mid-guts of the wild tsetse flies. These results show that there is a wide range of trypanosome genotypes circulating in the mid-guts of wild tsetse flies from the Fontem sleeping sickness focus. They open new avenues to undertake investigations on the maturation of multiple infections observed in the tsetse fly mid-guts. Such investigations may allow to understand how the multiple infections evolve from the tsetse flies mid-guts to the salivary glands and also to understand the consequence of these evolutions on the dynamic (which genotype is transmitted to mammals) of trypanosomes transmission.
Collapse
Affiliation(s)
- Gustave Simo
- Department of Biochemistry, Faculty of Science, P.O. Box 67, University of Dschang, Dschang, Cameroon.
| | | | | | | | | |
Collapse
|
4
|
Simo G, Njiokou F, Tume C, Lueong S, De Meeûs T, Cuny G, Asonganyi T. Population genetic structure of Central African Trypanosoma brucei gambiense isolates using microsatellite DNA markers. INFECTION GENETICS AND EVOLUTION 2010; 10:68-76. [DOI: 10.1016/j.meegid.2009.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
|
5
|
Trypanosoma brucei gambiense Type 1 populations from human patients are clonal and display geographical genetic differentiation. INFECTION GENETICS AND EVOLUTION 2008; 8:847-54. [DOI: 10.1016/j.meegid.2008.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/11/2008] [Accepted: 08/15/2008] [Indexed: 11/19/2022]
|
6
|
Simo G, Cuny G, Demonchy R, Herder S. Trypanosoma brucei gambiense: study of population genetic structure of Central African stocks using amplified fragment length polymorphism (AFLP). Exp Parasitol 2007; 118:172-80. [PMID: 17850792 DOI: 10.1016/j.exppara.2007.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 06/28/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
To understand the maintenance and resurgence of historical Human African Trypanosomiasis (HAT) foci, AFLP was used to genotype 100 Central African Trypanosoma brucei s.l. stocks. This technique confirmed the high genetic stability of T. b. gambiense group 1 stocks and the micro genetic variability within Central African T. b. gambiense stocks. It revealed several T. b. gambiense genotypes and allowed the identification of minor and major genotypes in HAT foci. The coexistence of these genotypes in the same focus suggests that clustering of stocks according to HAT focus does not provide the true genetic picture of trypanosome circulating within the disease focus because the minor genotypes are generally underestimated. The presence of minor and major genotypes in HAT foci may explain the persistence and the resurgence of Central African sleeping sickness foci.
Collapse
Affiliation(s)
- G Simo
- Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM/MINRESI), P.O. Box 6163, Yaoundé, Cameroon.
| | | | | | | |
Collapse
|
7
|
Koffi M, Solano P, Barnabé C, de Meeûs T, Bucheton B, Cuny G, Jamonneau V. Genetic characterisation of Trypanosoma brucei s.l. using microsatellite typing: new perspectives for the molecular epidemiology of human African trypanosomiasis. INFECTION GENETICS AND EVOLUTION 2007; 7:675-84. [PMID: 17704009 DOI: 10.1016/j.meegid.2007.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/02/2007] [Accepted: 07/03/2007] [Indexed: 11/18/2022]
Abstract
The pathogenic agent of human African trypanosomiasis (HAT) is a trypanosome belonging to the species Trypanosoma brucei s.l. Molecular methods developed for typing T. brucei s.l. stocks are for the most part not polymorphic enough to study genetic diversity within T. brucei gambiense (T. b. gambiense) group 1, the main agent of HAT in West and Central Africa. Furthermore, these methods require high quantities of parasite material and consequently are hampered by a selection bias of the isolation and cultivation techniques. In this study, we evaluated the potential value of microsatellite markers (eight loci) in the genetic characterisation of T. brucei s.l. compared to the multi-locus enzyme electrophoresis reference technique. Stocks isolated in Ivory Coast and reference stocks were used for this purpose. Microsatellite markers were shown to be polymorphic enough to evidence the existence of genetic diversity within T. b. gambiense group 1 and to show the existence of mixed infections. Furthermore, they were able to amplify trypanosome DNA directly from field samples without the usual culturing stages. While the ability of microsatellite markers to detect mixed infections in such field samples is currently being discussed, they appear to be useful to study the parasite population's geographical structure and may provide new insight into their reproductive mode, a topic that is still under debate. Thus, use of microsatellite markers will contribute to the study of the influence of parasite genetics in the diversity of responses to HAT and may contribute to the improvement of HAT molecular diagnosis.
Collapse
Affiliation(s)
- Mathurin Koffi
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Programme Santé Animale, TA 207/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Wilkinson S, Emery AM, Khamis IS, Mgeni AF, Stothard JR, Rollinson D. Spatial and temporal population genetic survey of Bulinus globosus from Zanzibar: an intermediate host of Schistosoma haematobium. J Zool (1987) 2007. [DOI: 10.1111/j.1469-7998.2006.00274.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Proudfoot C, McCulloch R. Trypanosoma brucei DMC1 does not act in DNA recombination, repair or antigenic variation in bloodstream stage cells. Mol Biochem Parasitol 2006; 145:245-53. [PMID: 16289356 DOI: 10.1016/j.molbiopara.2005.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/05/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Homologous recombination acts in the repair of cellular DNA damage and can generate genetic variation. Some of this variation provides a discrete purpose in the cell, although it can also be genome-wide and contribute to longer-term natural selection. In Trypanosoma brucei, a eukaryotic parasite responsible for sleeping sickness disease in sub-Saharan Africa, homologous recombination acts to catalyse antigenic variation, an immune evasion strategy involving switches in variant surface glycoprotein. In addition, T. brucei can undergo genetic exchange by homologous recombination in the tsetse vector, and some evidence suggests that this occurs by meiosis. Here, we show that T. brucei, Trypanosoma cruzi and Leishmania major each contain a single copy gene whose product is highly related to the eukaryotic meiosis-specific protein Dmc1, which is structurally and functionally related to Rad51. We show that T. brucei DMC1 is transcribed in the bloodstream stage of the parasite, where the gene can be mutated by reverse genetic disruption. DMC1 mutation does not, however, result in detectable alterations in DNA repair, recombination or antigenic variation efficiency in this life cycle stage.
Collapse
Affiliation(s)
- Chris Proudfoot
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | |
Collapse
|
10
|
Simo G, Herder S, Njiokou F, Asonganyi T, Tilley A, Cuny G. Trypanosoma brucei s.l.: Characterisation of stocks from Central Africa by PCR analysis of mobile genetic elements. Exp Parasitol 2005; 110:353-62. [PMID: 15893753 DOI: 10.1016/j.exppara.2005.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/30/2005] [Accepted: 04/02/2005] [Indexed: 11/30/2022]
Abstract
To better understand the epidemiology of sleeping sickness in the Central African sub-region, notably the heterogeneity of Human African Trypanosomiasis (HAT) foci, the mobile genetic element PCR (MGE-PCR) technique was used to genotype Trypanosoma brucei s.l. (T. brucei s.l.) isolates from this sub-region. Using a single primer REV B, which detects positional variation of the mobile genetic element RIME, via amplification of flanking regions, MGE-PCR revealed a micro genetic variability between Trypanosoma brucei gambiense (T. b. gambiense) isolates from Central Africa. The technique also revealed the presence of several T. b. gambiense genotypes and allowed the identification of minor and major ubiquitous genotypes in HAT foci. The presence of several T. b. gambiense genotypes in HAT foci may explain the persistence and the resurgence phenomena of the disease and also the epidemic and the endemic status of some Central African sleeping sickness foci. The MGE-PCR technique represents a simple, rapid, and specific method to differentiate Central African T. brucei s.l. isolates.
Collapse
Affiliation(s)
- G Simo
- Laboratoire de Recherche sur les Trypanosomoses (LRT) OCEAC, Yaoundé, Cameroon.
| | | | | | | | | | | |
Collapse
|