Singh M, Beri D, Nageshan RK, Chavaan L, Gadara D, Poojary M, Subramaniam S, Tatu U. A secreted Heat shock protein 90 of Trichomonas vaginalis.
PLoS Negl Trop Dis 2018;
12:e0006493. [PMID:
29768419 PMCID:
PMC5973626 DOI:
10.1371/journal.pntd.0006493]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/29/2018] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
Trichomonas vaginalis is a causative agent of Trichomoniasis, a leading non-viral sexually transmitted disease worldwide. In the current study, we show Heat shock protein 90 is essential for its growth. Upon genomic analysis of the parasite, it was found to possess seven ORFs which could potentially encode Hsp90 isoforms. We identified a cytosolic Hsp90 homolog, four homologs which can align to truncated cytosolic Hsp90 gene products along with two Grp94 homologs (ER isoform of Hsp90). However, both Grp94 orthologs lacked an ER retention motif. In cancer cells, it is very well established that Hsp90 is secreted and regulates key clients involved in metastases, migration, and invasion. Since Trichomonas Grp94 lacks ER retention motif, we examined the possibility of its secretion. By using cell biology and biochemical approaches we show that the Grp94 isoform of Hsp90 is secreted by the parasite by the classical ER-Golgi pathway. This is the first report of a genome encoded secreted Hsp90 in a clinically important parasitic protozoan.
Hsp90 is an essential chaperone in eukaryotes and it is often described as a master regulator of cellular homeostasis. In addition to its well-known functions inside the cell, extracellular Hsp90 has also been implicated in migration and invasion of tumor cells. We have, for the first time, identified the presence of an extracellular Hsp90 in a parasitic protozoan, Trichomonas vaginalis. The extracellular Hsp90 is a Grp94 homolog that lacks a canonical ER retention signal. Our analysis of Grp94 sequences from protozoa shows that it is uncommon for a Grp94 to lack ER retention signal. In the current study, we characterized the biochemical parameters and established the extracellular localization of this Hsp90 paralog. This secreted Hsp90 in Trichomonas can potentially modulate host-pathogen interaction.
Collapse