1
|
Sun T, Bi X, Yang N, Zhang X, Chu J, Li L, Liu H, Tang R, Lin R. Glucocorticoid receptor inhibits Th2 immune responses by down-regulating Pparg and Gata3 in schistosomiasis. Front Immunol 2025; 16:1518586. [PMID: 40196108 PMCID: PMC11973390 DOI: 10.3389/fimmu.2025.1518586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction The Th2 immune response plays a pivotal role in the pathogenesis of schistosomiasis, contributing to the formation of hepatic granulomas and fibrosis. While the glucocorticoid receptor (GR) is a ubiquitously expressed nuclear receptor that mediates anti-inflammatory effects, its impact on Th2 responses in schistosomiasis remains underexplored. Thus, this study aimed to investigate the potential impact of GR activation on the hepatic Th2 immune response in schistosomiasis using the synthetic glucocorticoid dexamethasone. Method In vivo, Schistosoma japonicum-infected mice were treated with dexamethasone, while in vitro studies were conducted on Th2 cells. Additionally, RNA sequencing and single-cell sequencing were integrated to identify key transcription factors influenced by GR activation during Th2 cell differentiation, with gene expression levels validated both in vivo and in vitro. Results In vivo, GR activation markedly reduced the size of Schistosoma egg granulomas and substantially repressed the transcription of key Th2-related cytokines, such as IL-4, IL-5, and IL-13. In vitro, GR activation inhibited the transcription of IL-4, IL-5, and IL-13, as well as the secretion of IL-4 in Th2 cells. An integrated analysis of RNA sequencing and single-cell sequencing revealed that GR activation downregulated the expression of two major transcription factors, Gata3 and Pparg, which were elevated in infected mouse livers and Th2 cells but decreased following dexamethasone treatment. Conclusion GR activation may suppress the Th2 immune response triggered by egg antigens by downregulating the expression of the key transcription factors Gata3 and Pparg. While these findings provide insights into a potential complementary therapeutic strategy, further research is necessary to assess the feasibility and safety of targeting GR activation for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xue Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Rui Tang
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Abstract
Immunofluorescence allows the detection, visualization, and localization of proteins by using the ability of antibodies to firmly bind to specific antigens. Proteins must be accessible to thorough interaction with the specific antibodies. Different immune evasion mechanisms of parasites are directed to hamper or prevent access of antibodies to critical proteins or virulence factors. The blood fluke Schistosoma mansoni would not survive a day in the host blood capillaries if antibodies were able to readily bind to proteins located at the surface and mediate its attrition and demise by the complement system and/or the FcγR- or FcαR-bearing leukocytes. The worm surface is the area of parasite-host interaction and the route to critical nutrients, but is selectively permeable, allowing access of nutrient molecules but not host antibodies. Gentle procedures, which, however, are not commonly in use in vivo, are required to increase the permeability of the parasite outer membrane shield to just allow access of specific antibodies and identify and localize the proteins at the apical surface. Robust methods involving acetone, methanol, and Triton X-100 treatment lead to disintegration of the dual lipid bilayer cover with exposure of the proteins located in the tegument beneath. Internal proteins may not be accessed except following cryostat or paraffin sectioning. Accordingly, vaccine-induced specific antibodies to the apical surface or tegument proteins are unable to harm intact parasites. Specific antibodies to surface membrane proteins may only add to the action of administered or endo schistosomicides via acceleration of killing and interference with repair of severely and lightly impacted parasites, respectively. Therefore, careful immunofluorescent localization of S. mansoni proteins is important for devising the different control strategies against infection.
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo, Egypt
| |
Collapse
|
3
|
Jeremias WDJ, Araújo FMG, Queiroz FR, Pais FSM, de Mattos ACA, Salim ACDM, Coelho PMZ, Oliveira GC, Kusel JR, Guerra-Sá R, Coimbra RS, Babá ÉH. Comparative sequence analysis reveals regulation of genes in developing schistosomula of Schistosoma mansoni exposed to host portal serum. PLoS One 2017. [PMID: 28622369 PMCID: PMC5473564 DOI: 10.1371/journal.pone.0178829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Once inside a vertebrate host after infection, individual schistosomula of the parasite Schistosoma mansoni find a new and complex environment, which requires quick adjustments for survival, such as those that allow it to avoid the innate immune response of the host. Thus, it is very important for the parasite to remain within the skin after entering the host for a period of about 3 days, at which time it can then reach the venous system, migrate to the lungs and, by the end of eighth day post-infection, it reach the portal venous system, while undergoing minimal changes in morphology. However, after just a few days in the portal blood system, the parasite experiences an extraordinary increase in biomass and significant morphological alterations. Therefore, determining the constituents of the portal venous system that may trigger these changes that causes the parasite to consolidate its development inside the vertebrate host, thus causing the disease schistosomiasis, is essential. The present work simulated the conditions found in the portal venous system of the vertebrate host by exposing schistosomula of S. mansoni to in vitro culture in the presence of portal serum of the hamster, Mesocricetus auratus. Two different incubation periods were evaluated, one of 3 hours and one of 12 hours. These time periods were used to mimic the early contact of the parasite with portal serum during the course of natural infection. As a control, parasites were incubated in presence of hamster peripheral serum, in order to compare gene expression signatures between the two conditions. The mRNA obtained from parasites cultured under both conditions were submitted to a whole transcriptome library preparation and sequenced with a next generation platform. On average, nearly 15 million reads were produced per sample and, for the purpose of gene expression quantification, only reads mapped to one location of the transcriptome were considered. After statistical analysis, we found 103 genes differentially expressed by schistosomula cultured for 3 hours and 12 hours in the presence of hamster portal serum. After the subtraction of a second list of genes, also differentially expressed between schistosomula cultured for 3 hours and 12 hours in presence of peripheral serum, a set of 58 genes was finally established. This pattern was further validated for a subset of 17 genes, by measuring gene expression through quantitative real time polymerase chain reaction (qPCR). Processes that were activated by the portal serum stimulus include response to stress, membrane transport, protein synthesis and folding/degradation, signaling, cytoskeleton arrangement, cell adhesion and nucleotide synthesis. Additionally, a smaller number of genes down-regulated under the same condition act on cholinergic signaling, inorganic cation and organic anion membrane transport, cell adhesion and cytoskeleton arrangement. Considering the role of these genes in triggering processes that allow the parasite to quickly adapt, escape the immune response of the host and start maturation into an adult worm after contact with the portal serum, this work may point to unexplored molecular targets for drug discovery and vaccine development against schistosomiasis.
Collapse
Affiliation(s)
- Wander de Jesus Jeremias
- René Rachou, Oswaldo Cruz Foundation – FIOCRUZ-MG, Belo Horizonte, Minas Gerais, Brazil
- Centro Universitário de Belo Horizonte – UNIBH, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | | | - Fábio Ribeiro Queiroz
- René Rachou, Oswaldo Cruz Foundation – FIOCRUZ-MG, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Guilherme Correa Oliveira
- René Rachou, Oswaldo Cruz Foundation – FIOCRUZ-MG, Belo Horizonte, Minas Gerais, Brazil
- Instituto Tecnológico Vale, Belém, Pará, Brazil
| | - John Robert Kusel
- Glasgow University, Centre for Open Studies, Glasgow, United Kingdom
| | - Renata Guerra-Sá
- Federal University of Ouro Preto, Institute of Exact and Biological Sciences, Ouro Preto, Minas Gerais, Brazil
| | - Roney Santos Coimbra
- René Rachou, Oswaldo Cruz Foundation – FIOCRUZ-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Élio Hideo Babá
- René Rachou, Oswaldo Cruz Foundation – FIOCRUZ-MG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|