1
|
Reynolds M, Windsor F, Perkins S, Cable J. Parasites alter interaction patterns in fish social networks. Proc Biol Sci 2025; 292:20250793. [PMID: 40425167 PMCID: PMC12115853 DOI: 10.1098/rspb.2025.0793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Social networks influence the spread of parasites through populations. Although we know how parasites are transmitted as a product of social interactions, we have a limited understanding of how social networks are affected by parasites over time. Host-parasite interactions and the networks they form, are typically examined as static networks, and while topological descriptions at a specific time point are useful, both behaviour and the infection process are dynamic. By monitoring replicate populations of Trinidadian guppies (Poecilia reticulata) daily before and during infection with the ectoparasite Gyrodactylus turnbulli, we show how parasitism drives social network dynamics. Specifically, infected individuals increased their connections in networks affected by parasitism. In contrast, uninfected control shoals showed no change in network metrics. The structure of subnetworks (motifs) and networks, however, did not change in response to infection status. These findings provide further evidence of reciprocal host behaviour-parasite feedback mechanisms, and highlight that infected fish alter their interactions in order to 'off-load' their parasites. Understanding how these reciprocal interactions affect the structure and function of natural systems, as well as understanding how these interactions may alter with future environmental change, are key areas of future research.
Collapse
Affiliation(s)
| | - Fredric Windsor
- School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Sarah Perkins
- School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| |
Collapse
|
2
|
Cheung SJ, Masud N, Robison-Smith C, Hansal P, Davies-Jones J, Ward BD, Cable J. Assessing the chemical interactions and biological effects of a petrochemical and bio-based plastic with a common plastic flame retardant and solvent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177958. [PMID: 39671943 DOI: 10.1016/j.scitotenv.2024.177958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Microplastic pollution remains a persistent environmental challenge for aquatic environments. Yet, health impact assessments of microplastics focus largely on the polymers themselves. It is important to understand the chemical behaviour and biological effects of both plastics and chemicals associated with their production, such as additives and solvents. Here, the individual and interactive chemical behaviour and biological impacts of two microplastics and two associated chemicals are assessed: polyvinyl chloride (PVC), a traditional petroleum-based plastic; polyhydroxyalkanoate (PHA) a novel bio-based plastic; triphenyl phosphate (TPhP), a common plastic flame retardant; and a widely use solvent dimethyl sulfoxide (DMSO). Thermogravimetric analysis and Nuclear Magnetic Resonance revealed no significant polymer chemical adsorption and desorption of TPhP or DMSO nor any evidence of reaction products between TPhP and DMSO. Biological assays on a freshwater fish host-parasite system, assessed fish growth, feeding, disease resistance and parasite survival. Both microplastics, the TPhP and solvent DMSO individually and interactively had no significant impact on fish growth. However, PVC alone and PHA + TPhP + DMSO significantly inhibited feeding behaviour of fish and increased mortality. Fish exposed to the solvent DMSO alone experienced the highest disease burdens. Interestingly, off-host survival of parasitic worms exposed to DMSO or TPhP + DMSO was higher than unexposed control worms. This study highlights the complex effects of microplastics and plastic associated chemicals on biological systems, and that novel bio-based plastics are not necessarily 'better' especially when associated with the same chemicals. Industry must be required to declare which chemicals are used in the manufacture of plastic products.
Collapse
Affiliation(s)
- S J Cheung
- School of Biosciences, Cardiff University, CF10 3AX, UK.
| | - N Masud
- School of Biosciences, Cardiff University, CF10 3AX, UK
| | | | - P Hansal
- School of Chemistry, Cardiff University, CF10 3AT, UK
| | | | - B D Ward
- School of Chemistry, Cardiff University, CF10 3AT, UK
| | - J Cable
- School of Biosciences, Cardiff University, CF10 3AX, UK
| |
Collapse
|
3
|
Zhou S, Jin X, Duan M, Zou H, Li M, Marcogliese DJ, Wang G, Li W. Potential effects of host competence and schooling behavior on parasite transmission in a host-pathogen system: a test of the dilution effect. Int J Parasitol 2024; 54:697-703. [PMID: 39147305 DOI: 10.1016/j.ijpara.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
High species diversity in a community may reduce the risk of infectious disease, termed the dilution effect. However, the generality of the dilution effect in different disease systems remains controversial as both host competence and behaviors of hosts may play roles in dilution or amplification of disease. Using the goldfish (Carassius auratus)-monogenean ectoparasite (Gyrodactylus kobayashii) system, effects of host competence and schooling behavior on parasite transmission were investigated while holding focal host density constant. Following competency tests of 12 fish species as potential hosts for the parasite, infection by G. kobayashii was determined on fins of goldfish mixed with each of three different species based on their level of host competence, including Prussian carp, Carassius gibelio (low competence), grass carp, Ctenopharyngodon idellus (non-competent), swordtail, Xiphophorus helleri (non-competent), and the four species combined. Compared with mean abundance (85.8 ± 25.1) on goldfish in the control group, the mean abundance on goldfish decreased significantly when paired with 10 Prussian carp (30.0 ± 16.5), but did not differ significantly when paired with 10 swordtail (70.0 ± 22.2), 10 grass carp (116.1 ± 33.2), or the multi-species of three Prussian carp, four grass carp and three swordtail (75.9 ± 30.8) during the 11-day experiment. The parasite was also found on the Prussian carp in the Prussian carp group and the multi-species group at a mean abundance of 7.1 and 10.9, respectively. Video recording showed that the school of goldfish mixed well with the Prussian carp, while they maintained separation from the grass carp and swordtail when mixed together. The distance between goldfish increased, and swimming speed and contact time decreased with the additional of other fish species for all groups. The results suggested that the presence of a low-competence host in sufficient numbers was a necessary condition for a dilution effect due to encounter reduction, and the dilution effect may also be enhanced by changes in schooling behavior of goldfish in the presence of low competence hosts. However, the presence of non-competent hosts did not result in any dilution effect owing to the specialist nature of the parasites and the lack of mixing with schools of goldfish.
Collapse
Affiliation(s)
- Shun Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiao Jin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Guangdong Ocean University, Zhanjiang, China
| | - Ming Duan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - David J Marcogliese
- St. Andrews Biological Station, Fisheries and Oceans Canada, 125 Marine Science Drive, St. Andrews, New Brunswick, Canada
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
4
|
Blondel L, Klemet-N'Guessan S, Hendry AP, Scott ME. Parasite load, rather than parasite presence, decreases upstream movement in Trinidadian guppies Poecilia reticulata. JOURNAL OF FISH BIOLOGY 2024; 105:177-185. [PMID: 38684192 DOI: 10.1111/jfb.15771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Several factors influence whether an organism remains in its local habitat. Parasites can, for example, influence host movement by impacting their behavior, physiology, and morphology. In rivers, fish that swim efficiently against the current are able to maintain their position without being displaced downstream, a behavior referred to as positive rheotaxis. We hypothesized that both the presence and number of ectoparasites on a host would affect the ability of fish to avoid downstream displacement and thus prevent them from remaining in their habitat. We used the guppy-Gyrodactylus host-ectoparasite model to test whether parasite presence and parasite load had an effect on fish rheotaxis. We quantified rheotaxis of sham-infected and parasite-infected fish in a circular flow tank in the laboratory prior to infection and 5-6 days postinfection. Both parasite-infected and sham-infected individuals expressed similar levels of positive rheotaxis prior to infection and after infection. However, with increasing parasite numbers, guppies covered less distance in the upstream direction and spent more time in slower flow zones. These results suggest that higher numbers of Gyrodactylus ectoparasites negatively influence rheotactic movements. Further research is needed to understand the ecological and evolutionary implications of this ectoparasite on fish movement.
Collapse
Affiliation(s)
- L Blondel
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine, Metz, France
| | | | - A P Hendry
- Redpath Museum and Biology Department, McGill University, Montreal, Quebec, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), Ste-Anne de Bellevue, Quebec, Canada
| |
Collapse
|
5
|
Walsman JC, Lambe M, Stephenson JF. Associating with kin selects for disease resistance and against tolerance. Proc Biol Sci 2024; 291:20240356. [PMID: 38772422 DOI: 10.1098/rspb.2024.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Behavioural and physiological resistance are key to slowing epidemic spread. We explore the evolutionary and epidemic consequences of their different costs for the evolution of tolerance that trades off with resistance. Behavioural resistance affects social cohesion, with associated group-level costs, while the cost of physiological resistance accrues only to the individual. Further, resistance, and the associated reduction in transmission, benefit susceptible hosts directly, whereas infected hosts only benefit indirectly, by reducing transmission to kin. We therefore model the coevolution of transmission-reducing resistance expressed in susceptible hosts with resistance expressed in infected hosts, as a function of kin association, and analyse the effect on population-level outcomes. Using parameter values for guppies, Poecilia reticulata, and their gyrodactylid parasites, we find that: (1) either susceptible or infected hosts should invest heavily in resistance, but not both; (2) kin association drives investment in physiological resistance more strongly than in behavioural resistance; and (3) even weak levels of kin association can favour altruistic infected hosts that invest heavily in resistance (versus selfish tolerance), eliminating parasites. Overall, our finding that weak kin association affects the coevolution of infected and susceptible investment in both behavioural and physiological resistance suggests that kin selection may affect disease dynamics across systems.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Earth Research Institute, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Madalyn Lambe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Fox JA, Toure MW, Heckley A, Fan R, Reader SM, Barrett RDH. Insights into adaptive behavioural plasticity from the guppy model system. Proc Biol Sci 2024; 291:20232625. [PMID: 38471561 PMCID: PMC10932705 DOI: 10.1098/rspb.2023.2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Behavioural plasticity allows organisms to respond to environmental challenges on short time scales. But what are the ecological and evolutionary processes that underlie behavioural plasticity? The answer to this question is complex and requires experimental dissection of the physiological, neural and molecular mechanisms contributing to behavioural plasticity as well as an understanding of the ecological and evolutionary contexts under which behavioural plasticity is adaptive. Here, we discuss key insights that research with Trinidadian guppies has provided on the underpinnings of adaptive behavioural plasticity. First, we present evidence that guppies exhibit contextual, developmental and transgenerational behavioural plasticity. Next, we review work on behavioural plasticity in guppies spanning three ecological contexts (predation, parasitism and turbidity) and three underlying mechanisms (endocrinological, neurobiological and genetic). Finally, we provide three outstanding questions that could leverage guppies further as a study system and give suggestions for how this research could be done. Research on behavioural plasticity in guppies has provided, and will continue to provide, a valuable opportunity to improve understanding of the ecological and evolutionary causes and consequences of behavioural plasticity.
Collapse
Affiliation(s)
- Janay A. Fox
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - M. Wyatt Toure
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York 10027-6902, NY, USA
| | - Alexis Heckley
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - Raina Fan
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | - Simon M. Reader
- Department of Biology, McGill University, Montréal, Canada H3A 1B1
| | | |
Collapse
|
7
|
Robison-Smith C, Masud N, Tarring EC, Ward BD, Cable J. A class of their own? Water-soluble polymer pollution impacting a freshwater host-pathogen system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168086. [PMID: 37890633 DOI: 10.1016/j.scitotenv.2023.168086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
While the inclusion of synthetic polymers such as primary microplastics within personal care products have been widely restricted under EU/UK Law, water-soluble polymers (WSPs) have so far slipped the net of global chemical regulation despite evidence that these could be polluting wastewater effluents at concentrations greatly exceeding those of microplastics. Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) represent WSPs with common industry and household uses, down-the-drain disposal and a direct route to wastewater treatment plants, conveying high risk of environmental leaching into freshwater ecosystems. The current study is the first investigating the impacts of predicted environmental concentrations of these WSPs on life-history traits of two freshwater species also constituting a disease model (fish - Poecilia reticulata and parasite - Gyrodactylus turnbulli). Single effects of WSPs on fish as well as their interactive effects with infection of the ectoparasite were determined over a 45-day exposure. Generally, WSPs reduced fish growth and increased routine metabolic rate of fish implying a depleted energetic budget, however these effects were dose, exposure time and polymer dependent. Parasitic infection alone caused a significant reduction in fish growth and enhanced fish routine metabolic rate. In contrast, a non-additive effect on metabolic rate was evident in fish experiencing simultaneous infection and WSP exposure, suggesting a protective effect of the two WSPs for fish also exposed to a metazoan ectoparasite. Off-host parasite survival was significantly lowered by both WSPs; however, parasite counts of infected fish also exposed to WSP were not significantly different from the control, implying more complex mechanisms may underpin this stressor interaction. Distinct detrimental impacts were inflicted on both organisms implying environmental leaching of WSPs may be causing significant disruption to interspecies interactions within freshwater ecosystems. Additionally, these results could contribute to sustainable development in industry, as we conclude PVA represents a less harmful alternative to PVP.
Collapse
Affiliation(s)
| | - Numair Masud
- School of Biosciences, Cardiff University, CF10 3AX, UK
| | - Eve C Tarring
- School of Chemistry, Cardiff University, CF10 3AT, UK
| | | | - Jo Cable
- School of Biosciences, Cardiff University, CF10 3AX, UK
| |
Collapse
|
8
|
Tepox-Vivar N, Stephenson JF, Guevara-Fiore P. Transmission dynamics of ectoparasitic gyrodactylids (Platyhelminthes, Monogenea): An integrative review. Parasitology 2022; 149:1-13. [PMID: 35481457 DOI: 10.1017/s0031182022000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied host–parasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.
Collapse
Affiliation(s)
- Natalia Tepox-Vivar
- Maestría en Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| |
Collapse
|
9
|
Konczal M, Przesmycka KJ, Mohammed RS, Hahn C, Cable J, Radwan J. Expansion of frozen hybrids in the guppy ectoparasite, Gyrodactylus turnbulli. Mol Ecol 2021; 30:1005-1016. [PMID: 33345416 PMCID: PMC7986700 DOI: 10.1111/mec.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
Hybridization is one of the major factors contributing to the emergence of highly successful parasites. Hybrid vigour can play an important role in this process, but subsequent rounds of recombination in the hybrid population may dilute its effects. Increased fitness of hybrids can, however, be frozen by asexual reproduction. Here, we identify invasion of a 'frozen hybrid' genotype in natural populations of Gyrodactylus turnbulli, a facultatively sexual ectoparasitic flatworm that causes significant damage to its fish host. We resequenced genomes of these parasites infecting guppies from six Trinidad and Tobago populations, and found surprisingly high discrepancy in genome-wide nucleotide diversity between islands. The elevated heterozygosity on Tobago is maintained by predominantly clonal reproduction of hybrids formed from two diverged genomes. Hybridization has been followed by spread of the hybrids across the island, implying a selective advantage compared with native genotypes. Our results thus highlight that a single outcrossing event may be independently sufficient to cause pathogen expansion.
Collapse
Affiliation(s)
- Mateusz Konczal
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| | | | - Ryan S. Mohammed
- Department of Life SciencesFaculty of Science and TechnologyThe University of the West Indies Zoology Museum, UWISt. AugustineTrinidad and Tobago
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Jo Cable
- School of BiosciencesCardiff UniversityCardiffUK
| | - Jacek Radwan
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
10
|
Masud N, Ellison A, Pope EC, Cable J. Cost of a deprived environment - increased intraspecific aggression and susceptibility to pathogen infections. J Exp Biol 2020; 223:jeb229450. [PMID: 32943580 DOI: 10.1242/jeb.229450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022]
Abstract
A lack of environmental enrichment can be severely detrimental to animal welfare. For terrestrial species, including humans, barren environments are associated with reduced cognitive function and increased stress responses and pathology. Despite a clear link between increased stress and reduced immune function, uncertainty remains on how enrichment might influence susceptibility to disease. For aquatic vertebrates, we are only now beginning to assess enrichment needs. Enrichment deprivation in fish has been linked to increased stress responses, agonistic behaviour, physiological changes and reduced survival. Limited data exist, however, on the impact of enrichment on disease resistance in fish, despite infectious diseases being a major challenge for global aquaculture. Here, using a model vertebrate host-parasite system, we investigated the impact of enrichment deprivation on susceptibility to disease, behaviour and physiology. Fish in barren tanks showed significantly higher infection burdens compared with those in enriched enclosures and they also displayed increased intraspecific aggression behaviour. Infections caused hosts to have significantly increased standard metabolic rates compared with uninfected conspecifics, but this did not differ between enriched and barren tanks. This study highlights the universal physiological cost of parasite infection and the biological cost (increased susceptibility to infection and increased aggression) of depriving captive animals of environmental enrichment.
Collapse
Affiliation(s)
- Numair Masud
- Cardiff University, School of Biosciences, Cardiff CF10 3AX, UK
| | - Amy Ellison
- Cardiff University, School of Biosciences, Cardiff CF10 3AX, UK
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK
| | - Edward C Pope
- Centre for Sustainable Aquatic Research, Swansea University, Swansea SA2 8PP, UK
| | - Jo Cable
- Cardiff University, School of Biosciences, Cardiff CF10 3AX, UK
| |
Collapse
|
11
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Masud N, Hayes L, Crivelli D, Grigg S, Cable J. Noise pollution: acute noise exposure increases susceptibility to disease and chronic exposure reduces host survival. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200172. [PMID: 33047012 PMCID: PMC7540788 DOI: 10.1098/rsos.200172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/21/2020] [Indexed: 05/28/2023]
Abstract
Anthropogenic noise is a pervasive global pollutant that has been detected in every major habitat on the planet. Detrimental impacts of noise pollution on physiology, immunology and behaviour have been shown in terrestrial vertebrates and invertebrates. Equivalent research on aquatic organisms has until recently been stunted by the misnomer of a silent underwater world. In fish, however, noise pollution can lead to stress, hearing loss, behavioural changes and impacted immunity. But, the functional effects of this impacted immunity on disease resistance due to noise exposure have remained neglected. Parasites that cause transmissible disease are key drivers of ecosystem biodiversity and a significant factor limiting the sustainable expansion of the animal trade. Therefore, understanding how a pervasive stressor is impacting host-parasite interactions will have far-reaching implications for global animal health. Here, we investigated the impact of acute and chronic noise on vertebrate susceptibility to parasitic infections, using a model host-parasite system (guppy-Gyrodactylus turnbulli). Hosts experiencing acute noise suffered significantly increased parasite burden compared with those in no noise treatments. By contrast, fish experiencing chronic noise had the lowest parasite burden. However, these hosts died significantly earlier compared with those exposed to acute and no noise treatments. By revealing the detrimental impacts of acute and chronic noise on host-parasite interactions, we add to the growing body of evidence demonstrating a link between noise pollution and reduced animal health.
Collapse
Affiliation(s)
- Numair Masud
- Schools of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| | - Laura Hayes
- Schools of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| | | | - Stephen Grigg
- Engineering, Cardiff University, CF10 3AX Cardiff, UK
| | - Jo Cable
- Schools of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| |
Collapse
|
13
|
Konczal M, Przesmycka KJ, Mohammed RS, Phillips KP, Camara F, Chmielewski S, Hahn C, Guigo R, Cable J, Radwan J. Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite Gyrodactylus bullatarudis. Mol Ecol 2020; 29:1494-1507. [PMID: 32222008 DOI: 10.1111/mec.15421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
Determining the molecular basis of parasite adaptation to its host is an important component in understanding host-parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short- and long-term adaptive evolution in the eukaryotic parasite Gyrodactylus bullatarudis infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analysing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G-protein and serine proteases genes, which are probably important in host-parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the idea that recombination between divergent genomes can result in particularly successful parasites.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina J Przesmycka
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, UWI, St. Augustine, Trinidad and Tobago
| | - Karl P Phillips
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland.,Marine Institute, Newport (Mayo), Ireland
| | - Francisco Camara
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
14
|
Hopkins SR, McGregor CM, Belden LK, Wojdak JM. Handling times and saturating transmission functions in a snail-worm symbiosis. Oecologia 2018; 188:277-287. [PMID: 29909554 DOI: 10.1007/s00442-018-4206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/10/2018] [Indexed: 11/25/2022]
Abstract
All dynamic species interaction models contain an assumption that describes how contact rates scale with population density. Choosing an appropriate contact-density function is important, because different functions have different implications for population dynamics and stability. However, this choice can be challenging, because there are many possible functions, and most are phenomenological and thus difficult to relate to underlying ecological processes. Using one such phenomenological function, we described a nonlinear relationship between field transmission rates and host density in a common snail-oligochaete symbiosis. We then used a well-known contact function from predator-prey models, the Holling Type II functional response, to describe and predict host snail contact rates in the laboratory. The Holling Type II functional response accurately described both the nonlinear contact-density relationship and the average contact duration that we observed. Therefore, we suggest that contact rates saturate with host density in this system because each snail contact requires a non-instantaneous handling time, and additional possible contacts do not occur during that handling time. Handling times and nonlinear contact rates might also explain the nonlinear relationship between symbiont transmission and snail density that we observed in the field, which could be confirmed by future work that controls for other potential sources of seasonal variation in transmission rates. Because most animal contacts are not instantaneous, the Holling Type II functional response might be broadly relevant to diverse host-symbiont systems.
Collapse
Affiliation(s)
- Skylar R Hopkins
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|