1
|
Rodríguez-Durán A, Ullah S, Parizi LF, Ali A, da Silva Vaz Junior I. Rabbits as Animal Models for Anti-Tick Vaccine Development: A Global Scenario. Pathogens 2023; 12:1117. [PMID: 37764925 PMCID: PMC10536012 DOI: 10.3390/pathogens12091117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Studies evaluating candidate tick-derived proteins as anti-tick vaccines in natural hosts have been limited due to high costs. To overcome this problem, animal models are used in immunization tests. The aim of this article was to review the use of rabbits as an experimental model for the evaluation of tick-derived proteins as vaccines. A total of 57 tick proteins were tested for their immunogenic potential using rabbits as models for vaccination. The most commonly used rabbit breeds were New Zealand (73.8%), Japanese white (19%), Californians (4.8%) and Flemish lop-eared (2.4%) rabbits. Anti-tick vaccines efficacy resulted in up to 99.9%. Haemaphysalis longicornis (17.9%) and Ornithodoros moubata (12.8%) were the most common tick models in vaccination trials. Experiments with rabbits have revealed that some proteins (CoAQP, OeAQP, OeAQP1, Bm86, GST-Hl, 64TRP, serpins and voraxin) can induce immune responses against various tick species. In addition, in some cases it was possible to determine that the vaccine efficacy in rabbits was similar to that of experiments performed on natural hosts (e.g., Bm86, IrFER2, RmFER2, serpins and serine protease inhibitor). In conclusion, results showed that prior to performing anti-tick vaccination trials using natural hosts, rabbits can be used as suitable experimental models for these studies.
Collapse
Affiliation(s)
- Arlex Rodríguez-Durán
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá 110911, Colombia
| | - Shafi Ullah
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Faculdade de Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
| |
Collapse
|
2
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Maqbool M, Sajid MS, Saqib M, Anjum FR, Tayyab MH, Rizwan HM, Rashid MI, Rashid I, Iqbal A, Siddique RM, Shamim A, Hassan MA, Atif FA, Razzaq A, Zeeshan M, Hussain K, Nisar RHA, Tanveer A, Younas S, Kamran K, Rahman SU. Potential Mechanisms of Transmission of Tick-Borne Viruses at the Virus-Tick Interface. Front Microbiol 2022; 13:846884. [PMID: 35602013 PMCID: PMC9121816 DOI: 10.3389/fmicb.2022.846884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.
Collapse
Affiliation(s)
- Mahvish Maqbool
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Faisal Rasheed Anjum
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Haleem Tayyab
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences Narowal, Lahore, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imaad Rashid
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Asif Iqbal
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Rao Muhammad Siddique
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Asim Shamim
- Department of Pathobiology, University of the Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Adeel Hassan
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, Collège of Veterinary and Animal Sciences, Jhang, Pakistan
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Razzaq
- Agricultural Linkages Program, Pakistan Agriculture Research Council, Islamabad, Pakistan
| | - Muhammad Zeeshan
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Hussain
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Akasha Tanveer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Younas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Sajjad ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
4
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Sanches GS, Villar M, Couto J, Ferrolho J, Fernández de Mera IG, André MR, Barros-Battesti DM, Machado RZ, Bechara GH, Mateos-Hernández L, de la Fuente J, Antunes S, Domingos A. Comparative Proteomic Analysis of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) Tropical and Temperate Lineages: Uncovering Differences During Ehrlichia canis Infection. Front Cell Infect Microbiol 2021; 10:611113. [PMID: 33585280 PMCID: PMC7879575 DOI: 10.3389/fcimb.2020.611113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
The tick vector Rhipicephalus sanguineus is established as a complex of closely related species with high veterinary-medical significance, in which the presence of different genetic, morphological, and biological traits has resulted in the recognition of different lineages within taxa. One of the most striking differences in the "temperate" and "tropical" lineages of R. sanguineus (s.l.) is the vector competence to Ehrlichia canis, suggesting that these ticks tolerate and react differently to pathogen infection. The present study addresses the SG and MG proteome of the R. sanguineus tropical and temperate lineages and compares their proteomic profile during E. canis infection. Batches of nymphs from the two lineages were allowed to feed on naïve and experimentally E. canis infected dogs and after molting, adults were dissected, and salivary glands and midgut tissues separated. Samples were screened for the presence of E. canis before proteomic analyses. The representation of the proteins identified in infected and non-infected tissues of each lineage was compared and gene ontology used for protein classification. Results highlight important differences in those proteomic profiles that added to previous reported genetic, biological, behavioral, and morphological differences, strengthening the hypothesis of the existence of two different species. Comparing infected and non-infected tissues, the results show that, while in midgut tissues the response to E. canis infection is similar in the salivary glands, the two lineages show a different pattern of protein representation. Focusing on the proteins found only in the infected condition, the data suggests that the cement cone produced during tick feeding may be implicated in pathogen infection. This study adds useful information to the debate on the controversial R. sanguineus systematic status, to the discussion related with the different vectorial competence occurring between the two lineages and identifies potential targets for efficient tick and tick-borne disease control.
Collapse
Affiliation(s)
- Gustavo Seron Sanches
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
- Escola de Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research [CRIB], University of Castilla-La Mancha, Ciudad Real, Spain
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| | | | - Marcos Rogério André
- Departamento de Patologia Veterinária, Universidade Estadual Paulista (FCAV-UNESP), Jaboticabal, Brazil
| | | | | | | | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- UMR BIPAR, INRAE, ANSES, École Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| |
Collapse
|
6
|
Sabadin GA, Salomon TB, Leite MS, Benfato MS, Oliveira PL, da Silva Vaz I. An insight into the functional role of antioxidant and detoxification enzymes in adult Rhipicephalus microplus female ticks. Parasitol Int 2020; 81:102274. [PMID: 33352319 DOI: 10.1016/j.parint.2020.102274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Ticks have developed physiological adaptations to transport, store, metabolize and secrete toxic components from the diet and environment. Different classes of enzymes are involved in these processes, however, the role of several of them is not yet characterized in Rhipicephalus microplus. In this context, this work investigated the action of antioxidant and detoxification enzymes, as well as the levels of essential cellular reductants in R. microplus partially engorged females (PEF) and fully engorged females (FEF). Results demonstrated that enzymes transcriptional levels and enzymatic activity from ovary and fat body were higher in PEF than in FEF, except for ovary Glutathione peroxidase (GPx), which was the only enzyme showing highest activity in the FEF stage. These results indicated a higher demand for antioxidant potential in these organs at the initial feeding phase than during egg-laying. In midgut, however, there was more variability in the transcriptional levels and activity of the different enzymes between the PEF and FEF phases. Similar NADPH levels were found in PEF and FEF phases, suggesting a remarkable capacity to maintain a regular supply of reducing power, despite the developmental changes and large intake of heme and iron. However, reduced glutathione (GSH) levels were variable between PEF and FEF when distinct organs were compared. Taken together, our data suggest a higher demand for reducing potential in FEF ticks. The silencing of catalase (CAT) or thioredoxin reductase (TRx) genes in females did not impair feeding, egg-laying capacity, or larvae hatching. CAT-silenced ticks had increased ovary peroxidase activity, a possible compensatory antioxidant mechanism. Altogether, the results shed light on the complexity of the antioxidant and detoxification enzyme system in ticks and its involvement in different physiological mechanisms.
Collapse
Affiliation(s)
- Gabriela A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Tiago B Salomon
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Milane S Leite
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mara S Benfato
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090 Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Bensaoud C, Aounallah H, Sciani JM, Faria F, Chudzinski-Tavassi AM, Bouattour A, M'ghirbi Y. Proteomic informed by transcriptomic for salivary glands components of the camel tick Hyalomma dromedarii. BMC Genomics 2019; 20:675. [PMID: 31455241 PMCID: PMC6712667 DOI: 10.1186/s12864-019-6042-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Background The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. Results We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. Conclusion This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully. Electronic supplementary material The online version of this article (10.1186/s12864-019-6042-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie. .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice (Budweis), Czechia.
| | - Hajer Aounallah
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Juliana Mozer Sciani
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil.,Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. São Francisco de Assis, 218, CEP 12916-900, Bragança Paulista, São Paulo, Brazil
| | - Fernanda Faria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | | | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Youmna M'ghirbi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| |
Collapse
|
8
|
Flores-Ramirez G, Sallay B, Danchenko M, Lakhneko O, Špitalská E, Skultety L. Comparative proteomics of the vector Dermacentor reticulatus revealed differentially regulated proteins associated with pathogen transmission in response to laboratory infection with Rickettsia slovaca. Parasit Vectors 2019; 12:318. [PMID: 31234913 PMCID: PMC6591964 DOI: 10.1186/s13071-019-3564-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne rickettsial diseases are caused by pathogens acquired from hard ticks. In particular, Rickettsia slovaca, a zoonotic infectious bacterium causing tick-borne lymphadenopathy (TIBOLA), is transmitted by the vectors Dermacentor spp. that can be found all over Europe. Although recent studies point out the extreme complexity of bacteria-induced effects in these blood-feeding vectors, the knowledge of individual molecules involved in the preservation and transmission of the pathogen is still limited. System biology tools, including proteomics, may contribute greatly to the understanding of pathogen-tick-host interactions. METHODS Herein, we performed a comparative proteomics study of the tick vector Dermacentor reticulatus that was experimentally infected with the endosymbiotic bacterium R. slovaca. Rickettsia-free ticks, collected in the southern region of Slovakia, were infected with the bacterium by a capillary tube-feeding system, and the dynamics of infection was assessed by quantitative PCR method after 5, 10, 15 and 27 days. RESULTS At the stage of controlled proliferation (at 27 dpi), 33 (from 481 profiled) differentially abundant protein spots were detected on a two-dimensional gel. From the aforementioned protein spots, 21 were successfully identified by tandem mass spectrometry. CONCLUSIONS Although a few discovered proteins were described as having structural or housekeeping functions, the vast majority of the affected proteins were suggested to be essential for tick attachment and feeding on the host, host immune system evasion and defensive response modulation to ensure successful pathogen transmission.
Collapse
Affiliation(s)
- Gabriela Flores-Ramirez
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Balázs Sallay
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Maksym Danchenko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Olha Lakhneko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Ludovit Skultety
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic. .,Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
9
|
Nuttall PA. Wonders of tick saliva. Ticks Tick Borne Dis 2018; 10:470-481. [PMID: 30459085 DOI: 10.1016/j.ttbdis.2018.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Saliva of ticks is arguably the most complex saliva of any animal. This is particularly the case for ixodid species that feed for many days firmly attached to the same skin site of their obliging host. Sequencing and spectrometry technologies combined with bioinformatics are enumerating ingredients in the saliva cocktail. The dynamic and expanding saliva recipe is helping decipher the wonderous activities of tick saliva, revealing how ticks stealthily hide from their hosts while satisfying their gluttony and sharing their individual resources. This review takes a tick perspective on the composition and functions of tick saliva, covering water balance, gasket and holdfast, control of host responses, dynamics, individuality, mate guarding, saliva-assisted transmission, and redundancy. It highlights areas sometimes overlooked - feeding aggregation and sharing of sialomes, and the contribution of salivary gland storage granules - and questions whether the huge diversity of tick saliva molecules is 'redundant' or more a reflection on the enormous adaptability wonderous saliva confers on ticks.
Collapse
Affiliation(s)
- Patricia A Nuttall
- Department of Zoology, University of Oxford, UK and Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.
| |
Collapse
|