1
|
Li Y, Suo J, Liang R, Liang L, Liu X, Ding J, Suo X, Tang X. Genetic manipulation for the non-model protozoan Eimeria: Advancements, challenges, and future perspective. iScience 2025; 28:112060. [PMID: 40109377 PMCID: PMC11919594 DOI: 10.1016/j.isci.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Eimeria parasites pose a significant global threat to animal health, necessitating improved and cost-effective control measures. Genetic manipulation is pivotal for understanding Eimeria biology and designing targeted control strategies. Recent advancements, including genome sequencing and the development of transient and stable transfection systems, have significantly enhanced insights into the molecular biology of Eimeria. These advancements have paved the way for cutting-edge techniques like CRISPR-Cas9 gene editing. This review summarizes the key milestones in the development of genetic manipulation platforms for Eimeria and their transformative applications, such as the development of next-generation drugs, vaccines, and Eimeria-based vaccine vectors. Furthermore, this review provides insights that could be applicable to the establishment of genetic tools for other protozoan organisms.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Feix AS, Laimer-Digruber A, Cruz-Bustos T, Steiner G, Ruttkowski B, Ehling-Schulz M, Joachim A. Variations in extracellular vesicle shedding of Cystoisospora suis stages (Apicomplexa: Coccidia). Int J Parasitol 2025; 55:197-212. [PMID: 39793881 DOI: 10.1016/j.ijpara.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Cystoisospora suis, a porcine enteral parasite of the order Coccidia, is characterized by a complex life cycle, with asexual and sexual development in the epithelium of the host gut and an environmental phase as an oocyst. All developmental stages vary greatly in their morphology and function, and therefore excrete different bioactive molecules for intercellular communication. Due to their complex development, we hypothesized that the extracellular vesicles (EVs) cargo is highly dependent on the life cycle stages from which they are released. This study aimed to characterize and compare EVs of all developmental stages of C. suis. Nanoparticle tracking analysis and microscopy were used to determine particle numbers and size distributions of stage-specific parasite EVs. Furthermore, Fourier-transform infrared spectral analysis was employed for the metabolic fingerprinting of EVs, and the lipid and protein profiles of all parasite stages were determined. Overall, the study revealed that asexual, sexual and transmissible stages of C. suis release different EVs during the parasite's life cycle. EVs of endogenous asexual and sexual stages were found to be more similar to each other than to those of the transmissible environmental stage, the oocyst. Furthermore, the ratio of fatty acids to polysaccharides and proteins changed during parasite development. In particular, proteins associated with the Apicomplexa and those involved in vesicle shedding showed changes in expression in all parasite stages. Lipid analysis showed that fatty acids were found in the same concentration through all parasite stages, whereas the amount of stereolipids, sphingolipids and glycerolipids changed between the parasite stages. In conclusion, this study, which presents the first known characterization of C. suis EVs, demonstrates a link between EVs and the respective developmental stages of the parasite, and putative functions in the parasite-parasite and host-parasite interplays.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria.
| | - Astrid Laimer-Digruber
- Institute of Microbiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Gerhard Steiner
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1 1030 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria
| |
Collapse
|
3
|
Feix AS, Joachim A. Cystoisospora suis. Trends Parasitol 2024; 40:647-648. [PMID: 38614866 DOI: 10.1016/j.pt.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
4
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
5
|
Warschkau D, Seeber F. Advances towards the complete in vitro life cycle of Toxoplasma gondii. Fac Rev 2023; 12:1. [PMID: 36846606 PMCID: PMC9944905 DOI: 10.12703/r/12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The full life cycle of Toxoplasma gondii cannot be recapitulated in vitro, and access to certain stages, such as mature tissue cysts (bradyzoites) and oocysts (sporozoites), traditionally requires animal experiments. This has greatly hindered the study of the biology of these morphologically and metabolically distinct stages, which are essential for the infection of humans and animals. However, several breakthrough advances have been made in recent years towards obtaining these life stages in vitro, such as the discovery of several molecular factors that induce differentiation and commitment to the sexual cycle, and different culture methods that use, for example, myotubes and intestinal organoids to obtain mature bradyzoites and different sexual stages of the parasite. We review these novel tools and approaches, highlight their limitations and challenges, and discuss what research questions can already be answered with these models. We finally identify future routes for recapitulating the entire sexual cycle in vitro.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
6
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. Inhibition of sexual stage-specific proteins results in reduced numbers of sexual stages and oocysts of Cystoisospora suis (Apicomplexa: Coccidia) in vitro. Int J Parasitol 2022; 52:829-841. [PMID: 36270547 DOI: 10.1016/j.ijpara.2022.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Parasites of the order Coccidia (phylum: Alveolata, subphylum: Apicomplexa) have sophisticated life cycles that include a switch from asexual to sexual development, characterised by distinct cell types. During the development of gametes (gamogony), substantial changes occur at the cellular and subcellular levels, leading to cell fusion of micro- and microgametes, and the development of a zygote that forms a protective outer layer for environmental survival as an oocyst, the transmissible stage. Studies on the porcine coccidian Cystoisospora suis already identified changes in transcription profiles during different time points in the parasite's development and identified proteins with potential roles in the sexual development of this parasite. Here, we focus on three proteins that are possibly involved in the sexual development of C. suis. Enkurin and hapless protein 2 (HAP2) play important roles in signal transduction and gamete fusion during the fertilisation process, and oocyst wall forming protein 1 (OWP1) is a homologue of oocyst wall forming proteins of related parasites. We evaluated their locations in the different life cycle stages of C. suis and their inhibition by specific antibodies in vitro. Immunolocalization detected enkurin in merozoites and sporulated oocysts, HAP2 in merozoites and microgamonts, and OWP2 in merozoites, macrogamonts, oocysts and sporozoites. Up to 100% inhibition of the development of sexual stages and oocyst formation with purified chicken immunoglobulin IgY sera against recombinant enkurin, HAP2, and especially OWP1, were demonstrated. We conclude that the three investigated sexual stage-specific proteins constitute targets for in vivo intervention strategies to interrupt parasite development and transmission to susceptible hosts.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna A-1210, Austria
| |
Collapse
|
7
|
The transcriptome from asexual to sexual in vitro development of Cystoisospora suis (Apicomplexa: Coccidia). Sci Rep 2022; 12:5972. [PMID: 35396557 PMCID: PMC8993856 DOI: 10.1038/s41598-022-09714-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The apicomplexan parasite Cystoisospora suis is an enteropathogen of suckling piglets with woldwide distribution. As with all coccidian parasites, its lifecycle is characterized by asexual multiplication followed by sexual development with two morphologically distinct cell types that presumably fuse to form a zygote from which the oocyst arises. However, knowledge of the sexual development of C. suis is still limited. To complement previous in vitro studies, we analysed transcriptional profiles at three different time points of development (corresponding to asexual, immature and mature sexual stages) in vitro via RNASeq. Overall, transcription of genes encoding proteins with important roles in gametes biology, oocyst wall biosynthesis, DNA replication and axonema formation as well as proteins with important roles in merozoite biology was identified. A homologue of an oocyst wall tyrosine rich protein of Toxoplasma gondii was expressed in macrogametes and oocysts of C. suis. We evaluated inhibition of sexual development in a host-free culture for C. suis by antiserum specific to this protein to evaluate whether it could be exploited as a candidate for control strategies against C. suis. Based on these data, targets can be defined for future strategies to interrupt parasite transmission during sexual development.
Collapse
|
8
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|