1
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Duwe L, Fouassier L, Lafuente-Barquero J, Andersen JB. Unraveling the actin cytoskeleton in the malignant transformation of cholangiocyte biology. Transl Oncol 2022; 26:101531. [PMID: 36113344 PMCID: PMC9483793 DOI: 10.1016/j.tranon.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Correct actin cytoskeleton organization is vital in the liver organ homeostasis and disease control. Rearrangements of the actin cytoskeleton may play a vital role in the bile duct cells cholangiocytes. An abnormal actin network leads to aberrant cell morphology, deregulated signaling networks and ultimately triggering the development of cholangiocarcinoma (CCA) and paving the route for cancer cell dissemination (metastasis). In this review, we will outline alterations of the actin cytoskeleton and the potential role of this dynamic network in initiating CCA, as well as regulating the course of this malignancy. Actin rearrangements not only occur because of signaling pathways, but also regulate and modify cellular signaling. This emphasizes the importance of the actin cytoskeleton itself as cause for aberrant signaling and in promoting tumorigenic phenotypes. We will highlight the impact of aberrant signaling networks on the actin cytoskeleton and its rearrangement as potential cause for CCA. Often, these exact mechanisms in CCA are limited understood and still must be elucidated. Indeed, focusing future research on how actin affects and regulates other signaling pathways may provide more insights into the mechanisms of CCA development, progression, and metastasis. Moreover, manipulation of the actin cytoskeleton organization highlights the potential for a novel therapeutic area.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark.
| |
Collapse
|
3
|
Prasopdee S, Yingchutrakul Y, Krobthong S, Pholhelm M, Wongtrakoongate P, Butthongkomvong K, Kulsantiwong J, Phanaksri T, Kunjantarachot A, Sathavornmanee T, Tesana S, Thitapakorn V. Differential plasma proteomes of the patients with Opisthorchiasis viverrini and cholangiocarcinoma identify a polymeric immunoglobulin receptor as a potential biomarker. Heliyon 2022; 8:e10965. [PMID: 36247154 PMCID: PMC9562451 DOI: 10.1016/j.heliyon.2022.e10965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
In Southeast Asian countries, nitrosamine compounds and the liver fluke Opisthorchis viverrini have long been identified as carcinogens for cholangiocarcinoma (CHCA). In order to effectively treat O. viverrini infections and prevent the development of CHCA, methods for disease detection are needed. This study aims to identify biomarkers for O. viverrini infection and CHCA. In the discovery phase, technical triplicates of five pooled plasma pools (10 plasma each) of healthy control subjects (noOVCCA), O. viverrini subjects (OV), and cholangiocarcinoma subjects (CCA), underwent solution-based digestion, with the label-free method, using a Thermo Scientific™ Q Exactive™ HF hybrid quadrupole-Orbitrap mass spectrometer and UltiMate 300 LC systems. The noOVCCA, OV, and CCA groups demonstrated different profiles and were clustered, as illustrated by PCA and heat map analysis. The STRING and reactome analysis showed that both OV and CCA groups up-regulated proteins targeting immune system-related proteins. Differential proteomic profiles, S100A9, and polymeric immunoglobulin receptor (PIGR) were specifically expressed in the CCA group. During the validation phase, another 50 plasma samples were validated via the PIGR sandwich ELISA. Using PIGR >1.559 ng/ml as a cut-off point, 78.00% sensitivity, 71.00% specificity, and AUC = 0.8216, were obtained. It is sufficient to differentially diagnose cholangiocarcinoma patients from healthy patients and those with Opisthorchiasis viverrini. Hence, in this study, PIGR was identified and validated as a potential biomarker for CHCA. Plasma PIGR is suggested for screening CHCA, especially in an endemic region of O. viverrini infection.
Collapse
Affiliation(s)
- Sattrachai Prasopdee
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected Parasitic Diseases, Thammasat University, Pathum Thani 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Pathum Thani 12120, Thailand
| | - Sucheewin Krobthong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Montinee Pholhelm
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected Parasitic Diseases, Thammasat University, Pathum Thani 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Patompon Wongtrakoongate
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Kritiya Butthongkomvong
- Medical Oncology Unit, Udonthani Cancer Hospital, Ministry of Public Health, Udon Thani 41330, Thailand
| | | | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Anthicha Kunjantarachot
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | | | - Smarn Tesana
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected Parasitic Diseases, Thammasat University, Pathum Thani 12120, Thailand
| | - Veerachai Thitapakorn
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected Parasitic Diseases, Thammasat University, Pathum Thani 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Corresponding author.
| |
Collapse
|