1
|
Costas-Carrera A, Verdolini N, Garcia-Rizo C, Mezquida G, Janssen J, Valli I, Corripio I, Sanchez-Torres AM, Bioque M, Lobo A, Gonzalez-Pinto A, Rapado-Castro M, Vieta E, De la Serna H, Mane A, Roldan A, Crossley N, Penades R, Cuesta MJ, Parellada M, Bernardo M. Difficulties during delivery, brain ventricle enlargement and cognitive impairment in first episode psychosis. Psychol Med 2024; 54:1339-1349. [PMID: 38014924 DOI: 10.1017/s0033291723003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND Patients with a first episode of psychosis (FEP) display clinical, cognitive, and structural brain abnormalities at illness onset. Ventricular enlargement has been identified in schizophrenia since the initial development of neuroimaging techniques. Obstetric abnormalities have been associated with an increased risk of developing psychosis but also with cognitive impairment and brain structure abnormalities. Difficulties during delivery are associated with a higher risk of birth asphyxia leading to brain structural abnormalities, such as ventriculomegaly, which has been related to cognitive disturbances. METHODS We examined differences in ventricular size between 142 FEP patients and 123 healthy control participants using magnetic resonance imaging. Obstetric complications were evaluated using the Lewis-Murray scale. We examined the impact of obstetric difficulties during delivery on ventricle size as well as the possible relationship between ventricle size and cognitive impairment in both groups. RESULTS FEP patients displayed significantly larger third ventricle size compared with healthy controls. Third ventricle enlargement was associated with diagnosis (higher volume in patients), with difficulties during delivery (higher volume in subjects with difficulties), and was highest in patients with difficulties during delivery. Verbal memory was significantly associated with third ventricle to brain ratio. CONCLUSIONS Our results suggest that difficulties during delivery might be significant contributors to the ventricular enlargement historically described in schizophrenia. Thus, obstetric complications may contribute to the development of psychosis through changes in brain architecture.
Collapse
Affiliation(s)
| | - Norma Verdolini
- Department of Mental Health, Umbria 1 Mental Health Center, Perugia, Italy
| | - Clemente Garcia-Rizo
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gisela Mezquida
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Joost Janssen
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Isabel Valli
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - Iluminada Corripio
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Department of Psychiatry, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana M Sanchez-Torres
- Department of Psychiatry, Navarra University Hospital, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Lobo
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Department of Medicine and Psychiatry, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Ana Gonzalez-Pinto
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Department of Psychiatry, Hospital Universitario de Alava, UPV/EHU, BIOARABA, Spain
| | - Marta Rapado-Castro
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia
| | - Eduard Vieta
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Institute of Neurosciences, Barcelona, Spain
| | - Helena De la Serna
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Mane
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University, Barcelona, Spain
| | - Alexandra Roldan
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Department of Psychiatry, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Nicolas Crossley
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Department of Psychiatry, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rafael Penades
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel J Cuesta
- Department of Psychiatry, Navarra University Hospital, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de salud Mental (CIBERSAM), Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
2
|
Merritt K, Luque Laguna P, Sethi A, Drakesmith M, Ashley SA, Bloomfield M, Fonville L, Perry G, Lancaster T, Dimitriadis SI, Zammit S, Evans CJ, Lewis G, Kempton MJ, Linden DEJ, Reichenberg A, Jones DK, David AS. The impact of cumulative obstetric complications and childhood trauma on brain volume in young people with psychotic experiences. Mol Psychiatry 2023; 28:3688-3697. [PMID: 37903876 PMCID: PMC10730393 DOI: 10.1038/s41380-023-02295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Psychotic experiences (PEs) occur in 5-10% of the general population and are associated with exposure to childhood trauma and obstetric complications. However, the neurobiological mechanisms underlying these associations are unclear. Using the Avon Longitudinal Study of Parents and Children (ALSPAC), we studied 138 young people aged 20 with PEs (n = 49 suspected, n = 53 definite, n = 36 psychotic disorder) and 275 controls. Voxel-based morphometry assessed whether MRI measures of grey matter volume were associated with (i) PEs, (ii) cumulative childhood psychological trauma (weighted summary score of 6 trauma types), (iii) cumulative pre/peri-natal risk factors for psychosis (weighted summary score of 16 risk factors), and (iv) the interaction between PEs and cumulative trauma or pre/peri-natal risk. PEs were associated with smaller left posterior cingulate (pFWE < 0.001, Z = 4.19) and thalamus volumes (pFWE = 0.006, Z = 3.91). Cumulative pre/perinatal risk was associated with smaller left subgenual cingulate volume (pFWE < 0.001, Z = 4.54). A significant interaction between PEs and cumulative pre/perinatal risk found larger striatum (pFWE = 0.04, Z = 3.89) and smaller right insula volume extending into the supramarginal gyrus and superior temporal gyrus (pFWE = 0.002, Z = 4.79), specifically in those with definite PEs and psychotic disorder. Cumulative childhood trauma was associated with larger left dorsal striatum (pFWE = 0.002, Z = 3.65), right prefrontal cortex (pFWE < 0.001, Z = 4.63) and smaller left insula volume in all participants (pFWE = 0.03, Z = 3.60), and there was no interaction with PEs group. In summary, pre/peri-natal risk factors and childhood psychological trauma impact similar brain pathways, namely smaller insula and larger striatum volumes. The effect of pre/perinatal risk was greatest in those with more severe PEs, whereas effects of trauma were seen in all participants. In conclusion, environmental risk factors affect brain networks implicated in schizophrenia, which may increase an individual's propensity to develop later psychotic disorders.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK.
| | - Pedro Luque Laguna
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Arjun Sethi
- Department of Forensic & Neurodevelopmental Sciences, IOPPN, King's College London, London, UK
| | - Mark Drakesmith
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Sarah A Ashley
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Michael Bloomfield
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | | | - Gavin Perry
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Tom Lancaster
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Department of Psychology, Bath University, Bath, UK
| | - Stavros I Dimitriadis
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain
| | - Stanley Zammit
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Bristol Medical School (PHS), University of Bristol, Bristol, UK
| | - C John Evans
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Glyn Lewis
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Matthew J Kempton
- Psychosis Studies Department, IOPPN, King's College London, London, UK
| | - David E J Linden
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Derek K Jones
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Anthony S David
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| |
Collapse
|
3
|
Wortinger LA, Engen K, Barth C, Andreassen OA, Nordbø Jørgensen K, Agartz I. Asphyxia at birth affects brain structure in patients on the schizophrenia-bipolar disorder spectrum and healthy participants. Psychol Med 2022; 52:1050-1059. [PMID: 32772969 PMCID: PMC9069351 DOI: 10.1017/s0033291720002779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/05/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Uncertainty exists about what causes brain structure alterations associated with schizophrenia (SZ) and bipolar disorder (BD). Whether a history of asphyxia-related obstetric complication (ASP) - a common but harmful condition for neural tissue - contributes to variations in adult brain structure is unclear. We investigated ASP and its relationship to intracranial (ICV), global brain volumes and regional cortical and subcortical structures. METHODS A total of 311 patients on the SZ - BD spectrum and 218 healthy control (HC) participants underwent structural magnetic resonance imaging. They were evaluated for ASP using prospective information obtained from the Medical Birth Registry of Norway. RESULTS In all groups, ASP was related to smaller ICV, total brain, white and gray matter volumes and total surface area, but not to cortical thickness. Smaller cortical surface areas were found across frontal, parietal, occipital, temporal and insular regions. Smaller hippocampal, amygdala, thalamus, caudate and putamen volumes were reported for all ASP subgroups. ASP effects did not survive ICV correction, except in the caudate, which remained significantly smaller in both patient ASP subgroups, but not in the HC. CONCLUSIONS Since ASP was associated with smaller brain volumes in all groups, the genetic risk of developing a severe mental illness, alone, cannot easily explain the smaller ICV. Only the smaller caudate volumes of ASP patients specifically suggest that injury from ASP can be related to disease development. Our findings give support for the ICV as a marker of aberrant neurodevelopment and ASP in the etiology of brain development in BD and SZ.
Collapse
Affiliation(s)
- Laura Anne Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristine Engen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Barth
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Sasabayashi D, Takayanagi Y, Takahashi T, Furuichi A, Kobayashi H, Noguchi K, Suzuki M. Increased brain gyrification and subsequent relapse in patients with first-episode schizophrenia. Front Psychiatry 2022; 13:937605. [PMID: 36032231 PMCID: PMC9406142 DOI: 10.3389/fpsyt.2022.937605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Most schizophrenia patients experience psychotic relapses, which may compromise long-term outcome. However, it is difficult to objectively assess the actual risk of relapse for each patient as the biological changes underlying relapse remain unknown. The present study used magnetic resonance imaging (MRI) to investigate the relationship between brain gyrification pattern and subsequent relapse in patients with first-episode schizophrenia. The subjects consisted of 19 patients with and 33 patients without relapse during a 3-year clinical follow-up after baseline MRI scanning. Using FreeSurfer software, we compared the local gyrification index (LGI) between the relapsed and non-relapsed groups. In the relapsed group, we also explored the relationship among LGI and the number of relapses and time to first relapse after MRI scanning. Relapsed patients exhibited a significantly higher LGI in the bilateral parietal and left occipital areas than non-relapsed patients. In addition, the time to first relapse was negatively correlated with LGI in the right inferior temporal cortex. These findings suggest that increased LGI in the temporo-parieto-occipital regions in first-episode schizophrenia patients may be a potential prognostic biomarker that reflects relapse susceptibility in the early course of the illness.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
5
|
Cortical morphology and illness insight in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 272:985-995. [PMID: 34518921 PMCID: PMC9388450 DOI: 10.1007/s00406-021-01328-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/27/2021] [Indexed: 11/07/2022]
Abstract
Insight into illness in schizophrenia (SZ) patients has a major impact on treatment adherence and outcome. Previous studies have linked distinct deviations of brain structure to illness insight, specifically in frontoparietal and subcortical regions. Some of these abnormalities are thought to reflect aberrant cortical development. In this study, we used cross-sectional data to examine associations between illness insight and two cortical surface markers that are known to follow distinct neurodevelopmental trajectories, i.e. cortical gyrification (CG) and thickness (CT). CG and CT was investigated in SZ patients (n = 82) and healthy controls (HC, n = 48) using 3 T structural magnetic resonance imaging. Illness insight in SZ patients was measured using the OSSTI scale, an instrument that provides information on two distinct dimensions of illness insight, i.e. treatment adherence (OSSTI-A) and identification of disease-related symptoms (OSSTI-I). CT and CG were computed using the Computational Anatomy Toolbox (CAT12). Whole-brain and regions-of-interest (ROI)-based analyses were performed. SZ patients showed higher CG in anterior cingulate, superior frontal and temporal gyrus and reduced CG in insular and superior frontal cortex when compared to HC. SZ patients showed decreased CT in pre- and paracentral, occipital, cingulate, frontoparietal and temporal regions. Illness insight in SZ patients was significantly associated with both CG and CT in the left inferior parietal lobule (OSSTI-A) and the right precentral gyrus (CG/OSSTI-A, CT/OSSTI-I). The data support a multi-parametric neuronal model with both pre- and postnatal brain developmental factors having an impact on illness insight in patients with SZ.
Collapse
|
6
|
Tosato S, Bonetto C, Vassos E, Lasalvia A, De Santi K, Gelmetti M, Cristofalo D, Richards A, Ruggeri M. Obstetric Complications and Polygenic Risk Score: Which Role in Predicting a Severe Short-Term Outcome in Psychosis? Genes (Basel) 2021; 12:1895. [PMID: 34946845 PMCID: PMC8702213 DOI: 10.3390/genes12121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding and improving the outcomes of psychosis remains a major challenge for clinical research. Obstetric complications (OCs) as a risk factor for schizophrenia (SZ) have been investigated as a potential predictor of outcomes in relation to illness severity and poorer treatment outcome, but there are less reports on first episode psychosis (FEP) patients. We test whether OCs, collected in a cohort of FEP patients, can predict illness course and psychopathology severity after 2 years from the onset. Moreover, we explore whether the SZ-polygenic risk score (PRS) would predict the illness course and whether the interaction between OCS and PRS shows a significant effect. A cohort of 264 FEP patients were assessed with standardized instruments. OCs were recorded using the Lewis-Murray scale in interviews with the patients' mothers: 30% of them reported at least one OC. Patients with at least one OC were more likely to have a non-remitting course of illness compared to those without OCs (35.3% vs. 16.3%, p = 0.014). No association between SZ-PRS and course of illness nor evidence for a gene-environment interaction was found. In our sample, poor short-term outcomes were associated with OCs, while SZ-PRS was not a prognostic indicator of poor outcomes.
Collapse
Affiliation(s)
- Sarah Tosato
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, 37134 Verona, Italy; (C.B.); (A.L.); (M.G.); (D.C.); (M.R.)
| | - Chiara Bonetto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, 37134 Verona, Italy; (C.B.); (A.L.); (M.G.); (D.C.); (M.R.)
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK;
- The National Institute for Health Research, Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London SE5 8AF, UK
| | - Antonio Lasalvia
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, 37134 Verona, Italy; (C.B.); (A.L.); (M.G.); (D.C.); (M.R.)
| | - Katia De Santi
- Unit of Psychiatry, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy;
| | - Margherita Gelmetti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, 37134 Verona, Italy; (C.B.); (A.L.); (M.G.); (D.C.); (M.R.)
| | - Doriana Cristofalo
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, 37134 Verona, Italy; (C.B.); (A.L.); (M.G.); (D.C.); (M.R.)
| | - Alexander Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK;
| | - Mirella Ruggeri
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, 37134 Verona, Italy; (C.B.); (A.L.); (M.G.); (D.C.); (M.R.)
| | | |
Collapse
|
7
|
Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl Psychiatry 2021; 11:176. [PMID: 33731700 PMCID: PMC7969935 DOI: 10.1038/s41398-021-01297-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Anomalous patterns of brain gyrification have been reported in major psychiatric disorders, presumably reflecting their neurodevelopmental pathology. However, previous reports presented conflicting results of patients having hyper-, hypo-, or normal gyrification patterns and lacking in transdiagnostic consideration. In this article, we systematically review previous magnetic resonance imaging studies of brain gyrification in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder at varying illness stages, highlighting the gyral pattern trajectory for each disorder. Patients with each psychiatric disorder may exhibit deviated primary gyri formation under neurodevelopmental genetic control in their fetal life and infancy, and then exhibit higher-order gyral changes due to mechanical stress from active brain changes (e.g., progressive reduction of gray matter volume and white matter integrity) thereafter, representing diversely altered pattern trajectories from those of healthy controls. Based on the patterns of local connectivity and changes in neurodevelopmental gene expression in major psychiatric disorders, we propose an overarching model that spans the diagnoses to explain how deviated gyral pattern trajectories map onto clinical manifestations (e.g., psychosis, mood dysregulation, and cognitive impairments), focusing on the common and distinct gyral pattern changes across the disorders in addition to their correlations with specific clinical features. This comprehensive understanding of the role of brain gyrification pattern on the pathophysiology may help to optimize the prediction and diagnosis of psychiatric disorders using objective biomarkers, as well as provide a novel nosology informed by neural circuits beyond the current descriptive diagnostics.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,Arisawabashi Hospital, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Costas-Carrera A, Garcia-Rizo C, Bitanihirwe B, Penadés R. Obstetric Complications and Brain Imaging in Schizophrenia: A Systematic Review. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1077-1084. [PMID: 33012683 DOI: 10.1016/j.bpsc.2020.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a complex disorder in which clinical symptomatology typically reflects underlying brain abnormalities that coalign with multiple physical health comorbidities. The pathogenesis of schizophrenia involves the interplay between genetic and environmental factors, with obstetric complications widely described as key players in elevating the risk of psychosis. In this regard, understanding the anatomical and functional alterations associated with obstetric complications may help to elucidate potential mechanisms through which birth complications could contribute to schizophrenia pathogenesis. We conducted a systematic review of the extant literature describing brain abnormalities and obstetric complications in patients with schizophrenia and related disorders in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A total of 471 studies were retrieved and screened, and 33 studies met inclusion criteria for our review. Studies varied considerably in their methods, with 11 studies employing computed tomography, 1 using magnetic resonance spectroscopy, and 21 using magnetic resonance imaging. The scientific quality of the included studies was assessed and documented. Obstetric complications increase the risk of provoking brain abnormalities. These abnormalities range from decreased gray matter volume and abnormal brain-ventricle ratios to a reduction of volume in limbic regions-which relate to what is commonly observed in schizophrenia. However, current evidence from neuroimaging studies remains scant in relation to establishing obstetric complications as an independent risk factor for schizophrenia.
Collapse
Affiliation(s)
- Ana Costas-Carrera
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain.
| | - Clemente Garcia-Rizo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain; Agusti Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; Psychiatry Unit, Department of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Byron Bitanihirwe
- Centre for Global Health, Trinity College, Dublin, Ireland; Department of Psychology, Trinity College, Dublin, Ireland; School of Medicine, Trinity College, Dublin, Ireland
| | - Rafael Penadés
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain; Agusti Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; Psychiatry Unit, Department of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
9
|
Rohleder C, Koethe D, Fritze S, Topor CE, Leweke FM, Hirjak D. Neural correlates of binocular depth inversion illusion in antipsychotic-naïve first-episode schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2019; 269:897-910. [PMID: 29556734 DOI: 10.1007/s00406-018-0886-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Binocular depth inversion illusion (BDII), a visual, 'top-down'-driven information process, is impaired in schizophrenia and particularly in its early stages. BDII is a sensitive measure of impaired visual information processing and represents a valid diagnostic tool for schizophrenia and other psychotic disorders. However, neurobiological underpinnings of aberrant BDII in first-episode schizophrenia are largely unknown at present. METHODS In this study, 22 right-handed, first-episode, antipsychotic-naïve schizophrenia patients underwent BDII assessment and MRI scanning at 1.5 T. The surface-based analysis via new version of Freesurfer (6.0) enabled calculation of cortical thickness and surface area. BDII total and faces scores were related to the two distinct cortical measurements. RESULTS We found a significant correlation between BDII performance and cortical thickness in the inferior frontal gyrus and middle temporal gyrus (p < 0.003, Bonferroni corr.), as well as superior parietal gyrus, postcentral gyrus, supramarginal gyrus, and precentral gyrus (p < 0.05, CWP corr.), respectively. BDII performance was significantly correlated with surface area in the superior parietal gyrus and right postcentral gyrus (p < 0.003, Bonferroni corr.). CONCLUSION BDII performance may be linked to cortical thickness and surface area variations in regions involved in "adaptive" or "top-down" modulation and stimulus processing, i.e., frontal and parietal lobes. Our results suggest that cortical features of distinct evolutionary and genetic origin differently contribute to BDII performance in first-episode, antipsychotic-naïve schizophrenia patients.
Collapse
Affiliation(s)
- Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital of Cologne, Cologne, Germany
| | - Dagmar Koethe
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Cristina E Topor
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
10
|
Hirjak D, Kubera KM, Northoff G, Fritze S, Bertolino AL, Topor CE, Schmitgen MM, Wolf RC. Cortical Contributions to Distinct Symptom Dimensions of Catatonia. Schizophr Bull 2019; 45:1184-1194. [PMID: 30753720 PMCID: PMC6811823 DOI: 10.1093/schbul/sby192] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Catatonia is a central aspect of schizophrenia spectrum disorders (SSD) and most likely associated with abnormalities in affective, motor, and sensorimotor brain regions. However, contributions of different cortical features to the pathophysiology of catatonia in SSD are poorly understood. Here, T1-weighted structural magnetic resonance imaging data at 3 T were obtained from 56 right-handed patients with SSD. Using FreeSurfer version 6.0, we calculated cortical thickness, area, and local gyrification index (LGI). Catatonic symptoms were examined on the Northoff catatonia rating scale (NCRS). Patients with catatonia (NCRS total score ≥3; n = 25) showed reduced surface area in the parietal and medial orbitofrontal gyrus and LGI in the temporal gyrus (P < .05, corrected for cluster-wise probability [CWP]) as well as hypergyrification in rostral cingulate and medial orbitofrontal gyrus when compared with patients without catatonia (n = 22; P < .05, corrected for CWP). Following a dimensional approach, a negative association between NCRS motor and behavior scores and cortical thickness in superior frontal, insular, and precentral cortex was found (34 patients with at least 1 motor and at least 1 other affective or behavioral symptom; P < .05, corrected for CWP). Positive associations were found between NCRS motor and behavior scores and surface area and LGI in superior frontal, posterior cingulate, precentral, and pericalcarine gyrus (P < .05, corrected for CWP). The data support the notion that cortical features of distinct evolutionary and genetic origin differently contribute to catatonia in SSD. Catatonia in SSD may be essentially driven by cortex variations in frontoparietal regions including regions implicated in the coordination and goal-orientation of behavior.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,To whom correspondence should be addressed; tel: 49-621-1703-0, fax: 0049-621-1703-2305, e-mail:
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alina L Bertolino
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cristina E Topor
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Chung Y, Allswede D, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Seidman LJ, Tsuang M, Walker E, Woods SW, McEwen S, van Erp TGM, Cannon TD. Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort. NEUROIMAGE-CLINICAL 2019; 23:101862. [PMID: 31150956 PMCID: PMC6541907 DOI: 10.1016/j.nicl.2019.101862] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/01/2019] [Accepted: 05/19/2019] [Indexed: 12/03/2022]
Abstract
In a recent machine learning study classifying “brain age” based on cross-sectional neuroanatomical data, clinical high-risk (CHR) individuals were observed to show deviation from the normal neuromaturational pattern, which in turn was predictive of greater risk of conversion to psychosis and a pattern of stably poor functional outcome. These effects were unique to cases who were between 12 and 17 years of age when their prodromal and psychotic symptoms began, suggesting that neuroanatomical deviance observable at the point of ascertainment of a CHR syndrome marks risk for an early onset form of psychosis. In the present study, we sought to clarify the pattern of neuroanatomical deviance linked to this “early onset” form of psychosis and whether this deviance is associated with poorer premorbid functioning. T1 MRI scans from 378 CHR individuals and 190 healthy controls (HC) from the North American Prodrome Longitudinal Study (NAPLS2) were analyzed. Widespread smaller cortical volume was observed among CHR individuals compared with HC at baseline evaluation, particularly among the younger group (i.e., those who were 12 to 17 years of age). Moreover, the younger CHR individuals who converted or presented worsened clinical symptoms at follow-up (within 2 years) exhibited smaller surface area in rostral anterior cingulate, lateral and medial prefrontal regions, and parahippocampal gyrus relative to the younger CHR individuals who remitted or presented a stable pattern of prodromal symptoms at follow-up. In turn, poorer premorbid functioning in childhood was associated with smaller surface area in medial orbitofrontal, lateral frontal, rostral anterior cingulate, precuneus, and temporal regions. Together with our prior report, these results are consistent with the view that neuroanatomical deviance manifesting in early adolescence marks vulnerability to a form of psychosis presenting with poor premorbid adjustment, an earlier age of onset (generally prior to the age of 18 years), and poor long-term outcome. Widespread cortical deficiencies observed in CHR individuals in early adolescence. Steeper rate of cortical thinning among converters in late adolescence. Neuroanatomical deviance in CHR youth is associated with clinical outcome. CHR individuals with poorer premorbid functioning exhibited reduced surface area.
Collapse
Affiliation(s)
- Yoonho Chung
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT 06520-8205, United States
| | - Dana Allswede
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT 06520-8205, United States
| | - Jean Addington
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, 760 Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Kristin Cadenhead
- Department of Psychiatry, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0761, United States
| | - Barbara Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd St., Queens, NY 11004, United States
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, 401 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Thomas McGlashan
- Department of Psychiatry, Yale University, 300 George St., New Haven, CT 06511, United States
| | - Diana Perkins
- Department of Psychiatry, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27514, United States; Renaissance Computing Institute, University of North Carolina, Chapel Hill, United States
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, 401 Park Drive, 2 East, Boston, MA 02215, United States; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, 401 Park Drive, 2 West, Boston, MA 02215, United States
| | - Ming Tsuang
- Department of Psychiatry, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0761, United States
| | - Elaine Walker
- Department of Psychology, Emory University, 487 Psychology Building, 36 Eagle Row, Atlanta, GA 30322, United States
| | - Scott W Woods
- Department of Psychiatry, Yale University, 300 George St., New Haven, CT 06511, United States
| | - Sarah McEwen
- Department of Psychiatry, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0761, United States
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, 5251 California Ave, Irvine, CA, 92617, United States
| | - Tyrone D Cannon
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT 06520-8205, United States; Department of Psychiatry, Yale University, 300 George St., New Haven, CT 06511, United States.
| | | |
Collapse
|
12
|
Schmitgen MM, Depping MS, Bach C, Wolf ND, Kubera KM, Vasic N, Hirjak D, Sambataro F, Wolf RC. Aberrant cortical neurodevelopment in major depressive disorder. J Affect Disord 2019; 243:340-347. [PMID: 30261449 DOI: 10.1016/j.jad.2018.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is strong neuroimaging evidence that cortical alterations represent a core pathophysiological feature of major depressive disorder (MDD). Differential contributions of cortical features of neurodevelopmental origin, which may distinctly contribute to MDD vulnerability, disease-onset, or symptom expression, are unclear at present. METHODS We investigated distinct markers of cortical neurodevelopment, i.e. local cortical gyrification (LGI) and thickness (CT) in patients with MDD (n = 38) and healthy controls (HC, n = 22) using 3 T structural magnetic resonance imaging data and surface-based data analysis techniques. CT and LGI were computed using the Computational Anatomy Toolbox (CAT12). Analyses were performed for the entire cortical surface followed by a complementary regions-of-interest approach. RESULTS MDD patients showed significantly greater LGI in frontal, cingulate, parietal, temporal, and occipital regions compared to HC (FDR-corrected at p < 0.05 using threshold-free cluster enhancement). No significant differences of CT were found. In the MDD-group, correlations were found between duration of illness in years and number of depressive episodes and LGI of frontal, temporal, and parietal regions (p < 0.05). LIMITATIONS Main limitations are the relatively modest sample size and a cross-sectional study design. We did not control for early environmental factors potentially influencing neurodevelopment, such as childhood trauma. We report associations uncorrected for multiple comparisons. CONCLUSIONS The data suggest different local trajectories of cortical change in MDD. In addition, our data support the notion that aberrant cortical development may serve as a vulnerability marker of MDD, as well as a potential predictor of disease course.
Collapse
Affiliation(s)
- Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Malte S Depping
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Claudia Bach
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Nadine D Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Nenad Vasic
- Department of Psychiatry and Psychotherapy, Clinical Center Christophsbad, Göppingen, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Italy
| | - Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany.
| |
Collapse
|
13
|
Quezada S, Castillo-Melendez M, Walker DW, Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol 2018; 596:5665-5674. [PMID: 30325048 DOI: 10.1113/jp277151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Collapse
Affiliation(s)
- Sebastian Quezada
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - Margie Castillo-Melendez
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| |
Collapse
|
14
|
Davies G, Rae CL, Garfinkel SN, Seth AK, Medford N, Critchley HD, Greenwood K. Impairment of perceptual metacognitive accuracy and reduced prefrontal grey matter volume in first-episode psychosis. Cogn Neuropsychiatry 2018; 23:165-179. [PMID: 29485348 DOI: 10.1080/13546805.2018.1444597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Metacognition, or "thinking about thinking", is a higher-order thought process that allows for the evaluation of perceptual processes for accuracy. Metacognitive accuracy is associated with the grey matter volume (GMV) in the prefrontal cortex (PFC), an area also impacted in schizophrenia. The present study set out to investigate whether deficits in metacognitive accuracy are present in the early stages of psychosis. METHODS Metacognitive accuracy in first-episode psychosis (FEP) was assessed on a perceptual decision-making task and their performance compared to matched healthy control participants (N = 18). A novel signal detection theory approach was used to model metacognitive sensitivity independently from objective perceptual performance. A voxel-based morphometry investigation was also conducted on GMV. RESULTS We found that the FEP group demonstrated significantly worse metacognitive accuracy compared to controls (p = .039). Importantly, GMV deficits were also observed in the superior frontal gyrus. The findings suggest a specific deficit in this processing domain to exist at first episode; however, no relationship was found between GMV and metacognitive accuracy. CONCLUSIONS Our findings support the notion that an inability to accurately scrutinise perception may underpin functional deficits observed in later schizophrenia; however, the exact neural basis of metacognitive deficits in FEP remains elusive.
Collapse
Affiliation(s)
- Geoff Davies
- a School of Psychology , University of Sussex , Brighton , UK.,b Sussex Partnership NHS Foundation Trust , Brighton , UK
| | - Charlotte L Rae
- c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Sarah N Garfinkel
- c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Anil K Seth
- c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,e School of Engineering & Informatics , University of Sussex , Brighton , UK
| | - Nick Medford
- b Sussex Partnership NHS Foundation Trust , Brighton , UK.,c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Hugo D Critchley
- b Sussex Partnership NHS Foundation Trust , Brighton , UK.,c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Kathryn Greenwood
- a School of Psychology , University of Sussex , Brighton , UK.,b Sussex Partnership NHS Foundation Trust , Brighton , UK
| |
Collapse
|
15
|
Reinders AATS, Chalavi S, Schlumpf YR, Vissia EM, Nijenhuis ERS, Jäncke L, Veltman DJ, Ecker C. Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder. Acta Psychiatr Scand 2018; 137:157-170. [PMID: 29282709 DOI: 10.1111/acps.12839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. METHODS This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. RESULTS Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. CONCLUSIONS In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization.
Collapse
Affiliation(s)
- A A T S Reinders
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - S Chalavi
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Biomedical Kinesiology, Research Center for Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Y R Schlumpf
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland.,Private Clinic for Psychiatry and Psychotherapy, Clienia Littenheid AG, Littenheid, Switzerland
| | - E M Vissia
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E R S Nijenhuis
- Private Clinic for Psychiatry and Psychotherapy, Clienia Littenheid AG, Littenheid, Switzerland
| | - L Jäncke
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland.,Research Unit for Plasticity and Learning of the Healthy Aging Brain, University of Zurich, Zurich, Switzerland
| | - D J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - C Ecker
- Department of Child & Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt am Main, Germany.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|
16
|
Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr Res 2017; 184:128-136. [PMID: 27989645 DOI: 10.1016/j.schres.2016.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 01/21/2023]
Abstract
There are established differences in cortical thickness (CT) in schizophrenia (SCZ) and bipolar (BD) patients when compared to healthy controls (HC). However, it is unknown to what extent environmental or genetic risk factors impact on CT in these populations. We have investigated the effect of Environmental Risk Scores (ERS) and Polygenic Risk Scores for SCZ (PGRS-SCZ) on CT. Structural MRI scans were acquired at 3T for patients with SCZ or BD (n=57) and controls (n=41). Cortical reconstructions were generated in FreeSurfer (v5.3). The ERS was created by determining exposure to cannabis use, childhood adverse events, migration, urbanicity and obstetric complications. The PGRS-SCZ were generated, for a subset of the sample (Patients=43, HC=32), based on the latest PGC GWAS findings. ANCOVAs were used to test the hypotheses that ERS and PGRS-SCZ relate to CT globally, and in frontal and temporal lobes. An increase in ERS was negatively associated with CT within temporal lobe for patients. A higher PGRS-SCZ was also related to global cortical thinning for patients. ERS effects remained significant when including PGRS-SCZ as a fixed effect. No relationship which survived FDR correction was found for ERS and PGRS-SCZ in controls. Environmental risk for SCZ was related to localised cortical thinning in patients with SCZ and BD, while increased PGRS-SCZ was associated with global cortical thinning. Genetic and environmental risk factors for SCZ appear therefore to have differential effects. This provides a mechanistic means by which different risk factors may contribute to the development of SCZ and BD.
Collapse
|
17
|
Ramos-Miguel A, Barr AM, Honer WG. Spines, synapses, and schizophrenia. Biol Psychiatry 2015; 78:741-3. [PMID: 26542741 DOI: 10.1016/j.biopsych.2015.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Alfredo Ramos-Miguel
- Child and Family Research Institute and Departments of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alasdair M Barr
- Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - William G Honer
- Child and Family Research Institute and Departments of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|