1
|
Zhang Y, Yan H, Han Y, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Influence of panic disorder and paroxetine on brain functional hubs in drug-free patients. J Psychopharmacol 2024; 38:1083-1094. [PMID: 39310938 DOI: 10.1177/02698811241278780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND The effects of panic disorder (PD) and pharmacotherapy on brain functional hubs in drug-free patients, and the utility of their degree centrality (DC) in diagnosing and predicting treatment response (TR) for PD, remained unclear. AIMS This study aimed to assess the effects of PD and paroxetine on brain functional hubs in drug-free patients and to identify neuroimaging biomarkers for diagnosing and predicting TR in patients with PD. METHODS Imaging data from 54 medication-free PD patients and 54 matched healthy controls (HCs) underwent DC and functional connectivity (FC) analyses before and after a 4-week paroxetine treatment. Diagnosis and prediction of TR models for PD were constructed using support vector machine (SVM) and support vector regression (SVR), with DC as features. RESULTS Patients with PD showed aberrant DC and FC in the anterior cingulum, temporal, and occipital areas compared with HCs at baseline. After treatment, DC of the patients increased in the calcarine cortex, lingual gyrus, and cerebellum IV/V, along with improved clinical symptoms. Utilizing voxel-wise DC values at baseline, the SVM effectively distinguished patients with PD from HCs with an accuracy of 83.33%. In SVR, the predicted TR significantly correlated with the observed TR (correlation coefficient (r) = 0.893, Mean Squared Error = 0.009). CONCLUSION Patients with PD exhibited abnormal DC and FC, notably in the limbic network, temporal, and occipital regions. Paroxetine ameliorated patients' symptoms while altering their brain FC. SVM and SVR models, utilizing baseline DC, effectively distinguished the patients from HCs and accurately predicted TR.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Wang HY, Guan BY, Wang SY, Ni MF, Miao YW, Tian F, Chen Y, Wu ML, Li R, Zhang BW. Disrupted emotion regulation and spontaneous neural activity in panic disorder: a resting-state fMRI study. Ther Adv Psychopharmacol 2024; 14:20451253241298871. [PMID: 39552918 PMCID: PMC11569504 DOI: 10.1177/20451253241298871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Background Emotional dysregulation, particularly unconscious catastrophic cognitions, plays a pivotal role in the genesis of panic disorder (PD). However, no studies have yet applied the percentage of amplitude fluctuation (PerAF) metric in resting-state functional magnetic resonance imaging to examine spontaneous neural functioning and its relation to catastrophic cognitions in PD. Objectives To explore the interplay between resting-state neural activity, functional connectivity (FC), and unconscious emotion regulation in individuals with PD. Design Cross-sectional study. Methods The study encompassed 51 participants, including 26 PD patients and 25 healthy individuals. The PerAF algorithm was employed to explore the local spontaneous neural activity in PD. Regions exhibiting aberrant spontaneous neural activity were used as seed points for whole-brain FC analysis. Correlations were utilized to examine associations between local neural activity patterns and neurocognitive assessments in PD. Results The study revealed that compared to healthy individuals, PD patients exhibited elevated PerAF values in key emotion-regulation-related brain regions, including the ventromedial prefrontal cortex (vmPFC), striatum, amygdala, dorsomedial prefrontal cortex (dmPFC), and cerebellum. In addition, the resting-state FC between vmPFC and precuneus, as well as between the cerebellum and precuneus, was weakened in PD patients. Furthermore, positive associations were noted between PerAF measurements of vmPFC and amygdala and catastrophizing scores. Conclusion PD involves regional and network-level alterations in resting-state brain activity. The fronto-striatal-limbic circuits play a critical role in catastrophic-style emotion regulation in PD patients. Reduced FC within the default mode network and cerebellum-default mode network may signify a coordination anomaly in introspection and cognitive activities in PD. These findings complement the model of implicit emotion regulation in PD and suggest potential intervention targets.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Neurology, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bei-Yan Guan
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shi-Yao Wang
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ming-Fei Ni
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan-Wei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Tian
- Department of Neurology, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Yumin Chen
- Department of Neurology, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Meng-Li Wu
- Department of Neurology, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Rui Li
- Department of Radiology, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Bing-Wei Zhang
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Department of Psychology, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Gopaldas M, Flook EA, Blackford JU. Bridging Neuroscience and Clinical Assessment in a Patient with Alcohol Use Disorder, Anxiety, and Trauma. J Psychiatr Pract 2024; 30:62-67. [PMID: 38227730 PMCID: PMC10795724 DOI: 10.1097/pra.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This article presents a unique framework that combines insights from neuroscience with clinical assessment to evaluate individuals who have co-occurring alcohol use disorder, anxiety, and trauma. Through the use of a case study, the authors demonstrate the practical application of this framework and contextualize the relevant neurocircuitry associated with alcohol withdrawal, maladaptive fear and anxiety, and chronic stress. By integrating these perspectives, they provide a comprehensive approach for assessing and treating patients with complex psychiatric histories, particularly those presenting with anxiety symptoms, offering valuable insights for practitioners.
Collapse
|
4
|
Heesbeen EJ, Bijlsma EY, Verdouw PM, van Lissa C, Hooijmans C, Groenink L. The effect of SSRIs on fear learning: a systematic review and meta-analysis. Psychopharmacology (Berl) 2023; 240:2335-2359. [PMID: 36847831 PMCID: PMC10593621 DOI: 10.1007/s00213-023-06333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are considered first-line medication for anxiety-like disorders such as panic disorder, generalized anxiety disorder, and post-traumatic stress disorder. Fear learning plays an important role in the development and treatment of these disorders. Yet, the effect of SSRIs on fear learning are not well known. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on acquisition, expression, and extinction of cued and contextual conditioned fear. METHODS We searched the Medline and Embase databases, which yielded 128 articles that met the inclusion criteria and reported on 9 human and 275 animal experiments. RESULTS Meta-analysis showed that SSRIs significantly reduced contextual fear expression and facilitated extinction learning to cue. Bayesian-regularized meta-regression further suggested that chronic treatment exerts a stronger anxiolytic effect on cued fear expression than acute treatment. Type of SSRI, species, disease-induction model, and type of anxiety test used did not seem to moderate the effect of SSRIs. The number of studies was relatively small, the level of heterogeneity was high, and publication bias has likely occurred which may have resulted in an overestimation of the overall effect sizes. CONCLUSIONS This review suggests that the efficacy of SSRIs may be related to their effects on contextual fear expression and extinction to cue, rather than fear acquisition. However, these effects of SSRIs may be due to a more general inhibition of fear-related emotions. Therefore, additional meta-analyses on the effects of SSRIs on unconditioned fear responses may provide further insight into the actions of SSRIs.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, Netherlands
| | - Carlijn Hooijmans
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
5
|
Wilson KA, MacNamara A. Transdiagnostic Fear and Anxiety: Prospective Prediction Using the No-Threat, Predictable Threat, and Unpredictable Threat Task. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:930-938. [PMID: 37881540 PMCID: PMC10593901 DOI: 10.1016/j.bpsgos.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Fear and anxiety are distinct dimensions of psychopathology that may be characterized by differences in dimensional threat reactivity. Heightened response to predictable threat is hypothesized to underlie fear symptomatology, whereas increased response to unpredictable threat may underlie anxiety. Despite widespread acceptance of this model, these purported associations have rarely been tested, and the prognostic value of predictable and unpredictable threat responding is unclear. Here we examined multilevel indicators of predictable and unpredictable threat response as cross-sectional correlates and prospective predictors of transdiagnostic fear and anxiety. Methods Fifty-two individuals with varying levels of internalizing psychopathology (31 female) performed the no-threat, predictable threat, and unpredictable threat task. Transdiagnostic fear and anxiety were assessed at baseline (time 1) and approximately 1.5 years later (time 2). We used event-related potential, the stimulus-preceding negativity, as a measure of threat anticipation and startle eyeblink as a measure of defensive reactivity during the no-threat, predictable threat, and unpredictable threat task. These probes were assessed as cross-sectional correlates and prospective predictors of fear and anxiety. Results Participants with larger time 1 stimulus-preceding negativities to predictable threat were characterized by greater time 1 fear. Larger time 1 stimulus-preceding negativities to unpredictable threat were associated with greater increases in time 2 anxiety. Heightened time 1 startle to predictable threat predicted larger increases in time 2 fear. Conclusions Results validate predictable and unpredictable threat responding as dimensional correlates of transdiagnostic fear versus anxiety and suggest that psychophysiological measures of predictable and unpredictable threat response hold promise as prospective predictors of trajectories of fear and anxiety.
Collapse
Affiliation(s)
- Kayla A. Wilson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| | - Annmarie MacNamara
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
- Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
6
|
Zhang P, Yang X, Wang Y, Liu H, Meng L, Yan Z, Zhou Y, Li Z. Increased functional connectivity of amygdala subregions in patients with drug-naïve panic disorder and without comorbidities. Chin Med J (Engl) 2023; 136:1331-1338. [PMID: 37130218 PMCID: PMC10309521 DOI: 10.1097/cm9.0000000000002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Amygdala plays an important role in the neurobiological basis of panic disorder (PD), and the amygdala contains different subregions, which may play different roles in PD. The aim of the present study was to examine whether there are common or distinct patterns of functional connectivity of the amygdala subregions in PD using resting-state functional magnetic resonance imaging and to explore the relationship between the abnormal spontaneous functional connectivity patterns of the regions of interest (ROIs) and the clinical symptoms of PD patients. METHODS Fifty-three drug-naïve, non-comorbid PD patients and 70 healthy controls (HCs) were recruited. Seed-based resting-state functional connectivity (rsFC) analyses were conducted using the bilateral amygdalae and its subregions as the ROI seed. Two samples t test was performed for the seed-based Fisher's z -transformed correlation maps. The relationship between the abnormal spontaneous functional connectivity patterns of the ROIs and the clinical symptoms of PD patients was investigated by Pearson correlation analysis. RESULTS PD patients showed increased rsFC of the bilateral amygdalae and almost all the amygdala subregions with the precuneus/posterior cingulate gyrus compared with the HC group (left amygdala [lAMY]: t = 4.84, P <0.001; right amygdala [rAMY]: t = 4.55, P <0.001; left centromedial amygdala [lCMA]: t = 3.87, P <0.001; right centromedial amygdala [rCMA]: t = 3.82, P = 0.002; left laterobasal amygdala [lBLA]: t = 4.33, P <0.001; right laterobasal amygdala [rBLA]: t = 4.97, P <0.001; left superficial amygdala [lSFA]: t = 3.26, P = 0.006). The rsFC of the lBLA with the left angular gyrus/inferior parietal lobule remarkably increased in the PD group ( t = 3.70, P = 0.003). And most of the altered rsFCs were located in the default mode network (DMN). A significant positive correlation was observed between the severity of anxiety and the rsFC between the lSFA and the left precuneus in PD patients ( r = 0.285, P = 0.039). CONCLUSIONS Our research suggested that the increased rsFC of amygdala subregions with DMN plays an important role in the pathogenesis of PD. Future studies may further explore whether the rsFC of amygdala subregions, especially with the regions in DMN, can be used as a biological marker of PD.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Xiangyun Yang
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yun Wang
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Huan Liu
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Limin Meng
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Zijun Yan
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Zhou
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjiang Li
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| |
Collapse
|
7
|
Jin S, Liu W, Hu Y, Liu Z, Xia Y, Zhang X, Ding Y, Zhang L, Xie S, Ma C, Kang Y, Hu Z, Cheng W, Yang Z. Aberrant functional connectivity of the bed nucleus of the stria terminalis and its age dependence in children and adolescents with social anxiety disorder. Asian J Psychiatr 2023; 82:103498. [PMID: 36758449 DOI: 10.1016/j.ajp.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Social anxiety disorder (SAD) is a prevalent and impairing mental disorder among children and adolescents. The bed nucleus of the stria terminalis (BNST) plays a critical role in anxiety disorders, including valence surveillance and hypervigilance for potential threats. However, the role of BNST and its related functional network in children and adolescents with SAD has not been fully investigated. This study examined the aberration of BNST's functional connectivity and its age dependence in adolescents with SAD. METHODS Using a sample of 75 SAD patients and 75 healthy controls (HCs) children aged 9-18 years old, we delineated the group-by-age interaction of BNST-seeded functional connectivity (FC) during resting state and movie-watching. The relationships between BNST-seeded FC and clinical scores were also examined. RESULTS During movie viewing, the FC between the right BNST and the left amygdala, bilateral posterior cingulate cortex (PCC), bilateral superior temporal cortex, and right pericalcarine cortex showed a diagnostic group-by-age interaction. Compared to HCs, SAD patients showed a significant enhancement of the above FC at younger ages. Meanwhile, they showed an age-dependent decrease in FC between the right BNST and left amygdala. Furthermore, for SAD patients, FC between the right BNST and left amygdala during movie viewing was positively correlated with separation anxiety scores. CONCLUSIONS The right BNST plays an essential role in the aberrant brain functioning in children and adolescents with SAD. The atypicality of BNST's FC has remarkable age dependence in SAD, suggesting an association of SAD with neurodevelopmental traits.
Collapse
Affiliation(s)
- Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yufeng Xia
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhishan Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Feola B, Flook EA, Gardner H, Phan KL, Gwirtsman H, Olatunji B, Blackford JU. Altered bed nucleus of the stria terminalis and amygdala responses to threat in combat veterans with posttraumatic stress disorder. J Trauma Stress 2023; 36:359-372. [PMID: 36938747 PMCID: PMC10548436 DOI: 10.1002/jts.22918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 03/21/2023]
Abstract
Posttraumatic stress disorder (PTSD) significantly impacts many veterans. Although PTSD has been linked to alterations in the fear brain network, the disorder likely involves alterations in both the fear and anxiety networks. Fear involves responses to imminent, predictable threat and is driven by the amygdala, whereas anxiety involves responses to potential, unpredictable threat and engages the bed nucleus of the stria terminalis (BNST). The BNST has been implicated in PTSD, but the role of the BNST in combat veterans with PTSD has yet to be examined. Identifying alterations in BNST responses to unpredictable threat could provide important new targets for treatment. The current study examined whether veterans with PTSD have altered BNST or amygdala responses (function and connectivity) to unpredictable and predictable threat. The fMRI task involved viewing predictable threat cues followed by threat images, predictable neutral cues followed by neutral images, and unpredictable threat cues followed by either a threat or neutral image. Participants included 32 combat-exposed veterans with PTSD and 13 combat-exposed controls without PTSD. Across all conditions, veterans with PTSD had heightened BNST activation and displayed stronger BNST and amygdala connectivity with multiple fear and anxiety regions (hypothalamus, hippocampus, insula, ventromedial prefrontal cortex) relative to controls. In contrast, combat controls showed a pattern of stronger connectivity during neutral conditions (e.g., BNST-vmPFC), which may suggest a neural signature of resilience to developing PTSD, ηp 2 = .087-.527, ps < .001. These findings have implications for understanding fear and anxiety networks that may contribute to the development and maintenance of PTSD.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth A Flook
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hannah Gardner
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - K Luan Phan
- Department of Psychiatry, The Ohio State University, Columbus, Ohio, USA
| | - Harry Gwirtsman
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley HealthCare System, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Bunmi Olatunji
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley HealthCare System, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Prefrontal cortical circuits in anxiety and fear: an overview. Front Med 2022; 16:518-539. [PMID: 35943704 DOI: 10.1007/s11684-022-0941-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
Pathological anxiety is among the most difficult neuropsychiatric diseases to treat pharmacologically, and it represents a major societal problem. Studies have implicated structural changes within the prefrontal cortex (PFC) and functional changes in the communication of the PFC with distal brain structures in anxiety disorders. Treatments that affect the activity of the PFC, including cognitive therapies and transcranial magnetic stimulation, reverse anxiety- and fear-associated circuit abnormalities through mechanisms that remain largely unclear. While the subjective experience of a rodent cannot be precisely determined, rodent models hold great promise in dissecting well-conserved circuits. Newly developed genetic and viral tools and optogenetic and chemogenetic techniques have revealed the intricacies of neural circuits underlying anxiety and fear by allowing direct examination of hypotheses drawn from existing psychological concepts. This review focuses on studies that have used these circuit-based approaches to gain a more detailed, more comprehensive, and more integrated view on how the PFC governs anxiety and fear and orchestrates adaptive defensive behaviors to hopefully provide a roadmap for the future development of therapies for pathological anxiety.
Collapse
|
10
|
Vantrease JE, Avonts B, Padival M, DeJoseph MR, Urban JH, Rosenkranz JA. Sex Differences in the Activity of Basolateral Amygdalar Neurons That Project to the Bed Nucleus of the Stria Terminalis and Their Role in Anticipatory Anxiety. J Neurosci 2022; 42:4488-4504. [PMID: 35477901 PMCID: PMC9172066 DOI: 10.1523/jneurosci.1499-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal fear and anxiety can manifest as psychiatric disorders. The bed nucleus of the stria terminalis (BNST) is implicated in sustained responding to, or anticipation of, an aversive event which can be expressed as anticipatory anxiety. The BLA is also active during anticipatory anxiety and sends projections to the BNST. However, little is known about the role for BLA neurons that project to BNST (BLA-BNST) in anticipatory anxiety in rodents. To address this, we tested whether chemogenetic inactivation of the BLA-BNST pathway attenuates sustained conditioned responses produced by anticipation of an aversive stimulus. For comparison, we also assessed BLA-BNST inactivation during social interaction, which is sensitive to unlearned anxiety. We found that BLA-BNST inactivation reduced conditioned sustained freezing and increased social behaviors, but surprisingly, only in males. To determine whether sex differences in BLA-BNST neuronal activity contribute to the differences in behavior, we used in vivo and ex vivo electrophysiological approaches. In males, BLA-BNST projection neurons were more active and excitable, which coincided with a smaller after-hyperpolarization current (I AHP) compared with other BLA neurons; whereas in females, BLA-BNST neurons were less excitable and had larger I AHP compared with other BLA neurons. These findings demonstrate that activity of BLA-BNST neurons mediates conditioned anticipatory anxiety-like behavior in males. The lack of a role of BLA-BNST in females in this behavior, possibly because of low excitability of these neurons, also highlights the need for caution when generalizing the role of specific neurocircuits in fear and anxiety.SIGNIFICANCE STATEMENT Anxiety disorders disproportionately affect women. This hints toward sex differences within anxiety neurocircuitry, yet most of our understanding is derived from male rodents. Furthermore, debilitating anticipation of adverse events is among the most severe anxiety symptoms, but little is known about anticipatory anxiety neurocircuitry. Here we demonstrated that BLA-BNST activity is required for anticipatory anxiety to a prolonged aversive cue, but only in males. Moreover, BLA-BNST neurons are hypoactive and less excitable in females. These results uncover BLA-BNST as a key component of anticipatory anxiety circuitry, and cellular differences may explain the sex-dependent role of this circuit. Uncovering this disparity provides evidence that the assumed basic circuitry of an anxiety behavior might not readily transpose from males to females.
Collapse
Affiliation(s)
- Jaime E Vantrease
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Brittany Avonts
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Mallika Padival
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - M Regina DeJoseph
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Janice H Urban
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
11
|
Bruzsik B, Biro L, Sarosdi KR, Zelena D, Sipos E, Szebik H, Török B, Mikics E, Toth M. Neurochemically distinct populations of the bed nucleus of stria terminalis modulate innate fear response to weak threat evoked by predator odor stimuli. Neurobiol Stress 2021; 15:100415. [PMID: 34765699 PMCID: PMC8572958 DOI: 10.1016/j.ynstr.2021.100415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/25/2022] Open
Abstract
Anxiety and trauma-related disorders are characterized by significant alterations in threat detection, resulting in inadequate fear responses evoked by weak threats or safety stimuli. Recent research pointed out the important role of the bed nucleus of stria terminalis (BNST) in threat anticipation and fear modulation under ambiguous threats, hence, exaggerated fear may be traced back to altered BNST function. To test this hypothesis, we chemogenetically inhibited specific BNST neuronal populations (corticotropin-releasing hormone - BNSTCRH and somatostatin - BNSTSST expressing neurons) in a predator odor-evoked innate fear paradigm. The rationale for this paradigm was threefold: (1) predatory cues are particularly strong danger signals for all vertebrate species evoking defensive responses on the flight-avoidance-freezing dimension (conservative mechanisms), (2) predator odor can be presented in a scalable manner (from weak to strong), and (3) higher-order processing of olfactory information including predatory odor stimuli is integrated by the BNST. Accordingly, we exposed adult male mice to low and high predatory threats presented by means of cat urine, or low- and high-dose of 2-methyl-2-thiazoline (2MT), a synthetic derivate of a fox anogenital product, which evoked low and high fear response, respectively. Then, we tested the impact of chemogenetic inhibition of BNSTCRH and BNSTSST neurons on innate fear responses using crh- and sst-ires-cre mouse lines. We observed that BNSTSST inhibition was effective only under low threat conditions, resulting in reduced avoidance and increased exploration of the odor source. In contrast, BNSTCRH inhibition had no impact on 2MT-evoked responses, but enhanced fear responses to cat odor, representing an even weaker threat stimulus. These findings support the notion that BNST is recruited by uncertain or remote, potential threats, and CRH and SST neurons orchestrate innate fear responses in complementary ways.
Collapse
Affiliation(s)
- Biborka Bruzsik
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Laszlo Biro
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Klara Rebeka Sarosdi
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Dora Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary.,Center for Neuroscience, Szentágothai Research Center, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Sipos
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Huba Szebik
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary.,Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Eva Mikics
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Mate Toth
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
12
|
Siminski N, Borgmann L, Becker MPI, Hofmann D, Gathmann B, Leehr EJ, Böhnlein J, Seeger FR, Schwarzmeier H, Roesmann K, Junghöfer M, Dannlowski U, Lueken U, Straube T, Herrmann MJ. Centromedial amygdala is more relevant for phobic confrontation relative to the bed nucleus of stria terminalis in patients with spider phobia. J Psychiatr Res 2021; 143:268-275. [PMID: 34530337 DOI: 10.1016/j.jpsychires.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/31/2023]
Abstract
Recent studies indicate differential involvement of the centromedial amygdala (CM) and the bed nucleus of the stria terminalis (BNST) during processing (anticipation and confrontation) of threat stimuli. Here, temporal predictability was shown to be a relevant factor. In this study, we want to investigate the relevance of these effects, which were found in healthy subjects, for anxiety disorders. Therefore, we investigated the differential involvement of CM and BNST in the anticipation and confrontation of phobic stimuli under variation of temporal predictability in spider phobia. 21 patients with spider phobia and 21 healthy controls underwent a temporally predictable/unpredictable phobic and neutral anticipation and confrontation paradigm using functional magnetic resonance imaging (fMRI) and ROI analyses. During the anticipation phase, healthy controls showed higher CM and BNST activity during the predictable compared with the unpredictable condition compared with the anxiety patients. During a confrontation phase that followed the anticipation phase, CM was more activated than BNST during the phobic compared with the neutral confrontation. While this effect was independent of threat predictability in patients, healthy controls showed higher activation in the CM compared with the BNST only during the predictable spider confrontation compared with the predictable bird confrontation. The results contribute to a better understanding of the separate roles of the CM and BNST during phobic processes. The CM was found to be more relevant to phobic confrontation in patients with spider phobia compared with the BNST.
Collapse
Affiliation(s)
- N Siminski
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - L Borgmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - M P I Becker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - D Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - B Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - E J Leehr
- Institute for Translational Psychiatry, University of Münster, Germany
| | - J Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany
| | - F R Seeger
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany; Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - H Schwarzmeier
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - K Roesmann
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany; Institute for Clinical Psychology and Psychotherapy, University of Siegen, Germany
| | - M Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | - U Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - U Lueken
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - T Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - M J Herrmann
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
13
|
Benke C, Alius MG, Hamm AO, Pané-Farré CA. Defensive Mobilization During Anticipation of Symptom Provocation: Association With Panic Pathology. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 8:397-405. [PMID: 34823048 DOI: 10.1016/j.bpsc.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Anxious apprehension about feared body symptoms is thought to play a crucial role in the development, chronicity, and treatment of panic disorder (PD). In this study, we therefore aimed to elucidate the role of defensive reactivity to anticipated unpleasant symptoms in PD that can contribute to a better understanding of pathomechanisms of PD as well as identification of potential targets in PD-focused interventions. By measuring amygdala-dependent potentiation of the startle reflex, we aimed to investigate whether 1) patients with PD exhibit a specifically increased defensive reactivity to anticipated unpleasant body symptoms and 2) whether clinical severity of panic symptomatology varies with magnitude of defensive activation. METHODS Defensive mobilization to anticipated threat was investigated in 73 patients with a primary diagnosis of PD with agoraphobia (PDA) and 52 healthy control subjects. Threat of symptom provocation was established by a standardized hyperventilation task and contrasted to threat of shock to the forearm of the participant. RESULTS Patients with PDA and healthy control subjects did not differ in their defensive responses during anticipation of shock. In contrast, patients with severe PDA as compared with healthy control subjects exhibited increased defensive response mobilization and reported more anxiety and panic symptoms during anticipation of feared body symptoms. Moreover, startle potentiation during anticipation of hyperventilation covaried with the severity of panic symptomatology. CONCLUSIONS The present findings suggest that increased defensive mobilization during anticipation of body symptoms is a neurobiological correlate of severe PDA that should be specifically targeted in PD interventions and might be used to monitor treatment success.
Collapse
Affiliation(s)
- Christoph Benke
- Department of Psychology, Clinical Psychology, Experimental Psychopathology, and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Manuela G Alius
- Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Alfons O Hamm
- Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Christiane A Pané-Farré
- Department of Psychology, Clinical Psychology, Experimental Psychopathology, and Psychotherapy, Philipps University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and University of Giessen, Marburg, Germany; Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
14
|
Daniel-Watanabe L, Fletcher PC. Are Fear and Anxiety Truly Distinct? BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:341-349. [DOI: 10.1016/j.bpsgos.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022] Open
|
15
|
Lago TR, Brownstein MJ, Page E, Beydler E, Manbeck A, Beale A, Roberts C, Balderston N, Damiano E, Pineles SL, Simon N, Ernst M, Grillon C. The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: a randomized proof-of-concept study. Psychopharmacology (Berl) 2021; 238:2393-2403. [PMID: 33970290 PMCID: PMC8376758 DOI: 10.1007/s00213-021-05861-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE Arginine vasopressin (AVP) is a neuropeptide that modulates both physiological and emotional responses to threat. Until recently, drugs that target vasopressin receptors (V1a) in the human central nervous system were unavailable. The development of a novel V1a receptor antagonist, SRX246, permits the experimental validation of vasopressin's role in the regulation of anxiety and fear in humans. OBJECTIVES Here, we examined the effects of SRX246 in a proof-of-concept translational paradigm of fear (phasic response to imminent threat) and anxiety (prolonged response to potential threat). METHODS Healthy volunteers received both SRX246 and placebo in a randomized, double-blind, counter-balanced order separated by a 5-7-day wash-out period. Threat consisted of unpleasant electric shocks. The "NPU" threat test probed startle reactivity during predictable threat (i.e., fear-potentiated startle) and unpredictable threat (i.e., anxiety-potentiated startle). RESULTS As predicted, SRX246 decreased anxiety-potentiated startle independent of fear-potentiated startle. CONCLUSIONS As anxiety-potentiated startle is elevated in anxiety and trauma-associated disorders and decreased by traditional anxiolytics such as SSRIs and benzodiazepines, the V1a receptor is a promising novel treatment target.
Collapse
Affiliation(s)
- Tiffany R Lago
- National Institute of Mental Health, Bethesda, MD, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- Boston University School of Medicine, Boston, MA, USA.
| | | | - Emily Page
- National Institute of Mental Health, Bethesda, MD, USA
| | - Emily Beydler
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Alexis Beale
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Nicholas Balderston
- National Institute of Mental Health, Bethesda, MD, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Eve Damiano
- Azevan Pharmaceuticals Inc, Bethlehem, PA, USA
| | - Suzanne L Pineles
- Boston University School of Medicine, Boston, MA, USA
- National Center, PTSD At VA Boston Healthcare System, Boston, MA, USA
| | - Neal Simon
- Azevan Pharmaceuticals Inc, Bethlehem, PA, USA
- Lehigh University, Bethelhem, PA, USA
| | - Monique Ernst
- National Institute of Mental Health, Bethesda, MD, USA
| | | |
Collapse
|
16
|
Xu L, Xu H, Ding H, Li J, Wang C. Intrinsic Network Brain Dysfunction Correlates With Temporal Complexity in Generalized Anxiety Disorder and Panic Disorder. Front Hum Neurosci 2021; 15:647518. [PMID: 34335204 PMCID: PMC8319536 DOI: 10.3389/fnhum.2021.647518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Generalized anxiety disorder (GAD) and panic disorder (PD) are the two severe subtypes of anxiety disorders (ADs), which are similar in clinical manifestation, pathogenesis, and treatment. Earlier studies have taken a whole-brain perspective on GAD and PD in the assumption that intrinsic fluctuations are static throughout the entire scan. However, it has recently been suggested that the dynamic alternations in functional connectivity (FC) may reflect the changes in macroscopic neural activity patterns underlying the critical aspects of cognition and behavior, and thus may act as biomarkers of disease. Methods: In this study, the resting-state functional MRI (fMRI) data were collected from 26 patients with GAD, 22 patients with PD, and 26 healthy controls (HCs). We investigated dynamic functional connectivity (DFC) by using the group spatial independent component analysis, a sliding window approach, and the k-means clustering methods. For group comparisons, the temporal properties of DFC states were analyzed statistically. Results: The dynamic analysis demonstrated two discrete connectivity "States" across the entire group, namely, a more segregated State I and a strongly integrated State II. Compared with HCs, patients with both GAD and PD spent more time in the weakly within-network State I, while performing fewer transitions and dwelling shorter in the integrated State II. Additionally, the analysis of DFC strength showed that connections associated with ADs were identified including the regions that belonged to default mode (DM), executive control (EC), and salience (SA) networks, especially the connections between SA and DM networks. However, no significant difference was found between the GAD and PD groups in temporal features and connection strength. Conclusions: More common but less specific alterations were detected in the GAD and PD groups, which implied that they might have similar state-dependent neurophysiological mechanisms and, in addition, could hopefully help us better understand their abnormal affective and cognitive performances in the clinic.
Collapse
Affiliation(s)
- Li Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jinyang Li
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Yu W, Caira CM, Del R Rivera Sanchez N, Moseley GA, Kash TL. Corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis exhibit sex-specific pain encoding in mice. Sci Rep 2021; 11:12500. [PMID: 34127705 PMCID: PMC8203647 DOI: 10.1038/s41598-021-91672-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) plays an emerging role in pain regulation. Pharmacological studies have found that inhibiting corticotropin-releasing factor (CRF) signaling in the BNST can selectively mitigate the sensory and affective-motivational components of pain. However, mechanistic insight on the source of CRF that drives BNST responses to these harmful experiences remains unknown. In the present study, we used a series of genetic approaches to show that CRF in the BNST is engaged in the processing and modulation of pain. We conducted cell-type specific in vivo calcium imaging in CRF-Cre mice and found robust and synchronized recruitment of BNSTCRF neurons during acute exposures to noxious heat. Distinct patterns of recruitment were observed by sex, as the magnitude and timing of heat responsive activity in BNSTCRF neurons differed for male and female mice. We then used a viral approach in Floxed-CRF mice to selectively reduce CRF expression in the BNST and found it decreased nociceptive sensitivity for both sexes and increased paw attending for females. Together, these findings reveal that CRF in the BNST influences multiple facets of the pain experience to impact the sex-specific expression of pain-related behaviors.
Collapse
Affiliation(s)
- Waylin Yu
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Pharmacology, School of Medicine, University of North Carolina At Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Christina M Caira
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalia Del R Rivera Sanchez
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Garrett A Moseley
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Pharmacology, School of Medicine, University of North Carolina At Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Flook EA, Feola B, Benningfield MM, Silveri MM, Winder DG, Blackford JU. Alterations in connectivity of the bed nucleus of the stria terminalis during early abstinence in individuals with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:1028-1038. [PMID: 33830508 PMCID: PMC8131245 DOI: 10.1111/acer.14596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND For individuals with Alcohol Use Disorder (AUD), long-term recovery is difficult in part due to symptoms of anxiety that occur during early abstinence and can trigger relapse. Research in rodent models of AUD has identified the bed nucleus of the stria terminalis (BNST), a small, sexually dimorphic, subcortical region, as critical for regulating anxiety-like behaviors during abstinence, particularly in female mice. Furthermore, prolonged alcohol use and subsequent abstinence alter BNST afferent and efferent connections to other brain regions. To our knowledge, however, no studies of early abstinence have investigated BNST structural connectivity in humans during abstinence; this study addresses that gap. METHODS Nineteen participants with AUD currently in early abstinence and 20 healthy controls completed a diffusion tensor imaging (DTI) scan. BNST structural connectivity was evaluated using probabilistic tractography. A linear mixed model was used to test between-groups differences in BNST network connectivity. Exploratory analyses were conducted to test for correlations between BNST connectivity and alcohol use severity and anxiety within the abstinence group. Sex was included as a factor for all analyses. RESULTS The BNST showed stronger structural connectivity with the BNST network in early abstinence women than in control women, which was not seen in men. Women also showed region-specific differences, with stronger BNST-hypothalamus structural connectivity but weaker vmPFC-BNST structural connectivity than men. Exploratory analyses also demonstrated a relationship between alcohol use severity and vmPFC-BNST structural connectivity that was moderated by sex. CONCLUSIONS This study is the first to demonstrate BNST structural connectivity differences in early abstinence and revealed key sex differences. The sex-specific differences in BNST structural connectivity during early abstinence could underlie known sex differences in abstinence symptoms and relapse risk and help to inform potential sex-specific treatments.
Collapse
Affiliation(s)
- Elizabeth A Flook
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Benningfield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, Brain Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Danny G Winder
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
19
|
Pang M, Zhong Y, Hao Z, Xu H, Wu Y, Teng C, Li J, Xiao C, Fox PT, Zhang N, Wang C. Resting-state causal connectivity of the bed nucleus of the stria terminalis in panic disorder. Brain Imaging Behav 2021; 15:25-35. [PMID: 31833015 DOI: 10.1007/s11682-019-00229-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Panic disorder (PD) is associated with anticipatory anxiety, a sustained threat response that appears to be related to the bed nucleus of the stria terminalis (BNST). Individuals with panic disorder may demonstrate significant differences in causal connectivity of the BNST in comparison to healthy controls. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant causal connectivity of the BNST in PD patients. 19 PD patients and 18 healthy controls (HC) matched for gender, age and education were included. Granger causality analysis (GCA) utilizing the BNST as a seed region was used to investigate changes in directional connectivity. Relative to healthy controls, PD patients displayed abnormal directional connectivity of the BNST including enhanced causal connectivity between the left parahippocampal gyrus and left BNST, the right insula and the right BNST, the left BNST and the right dorsolateral prefrontal cortex (dlPFC) and right BNST to the left and right dlPFC. Furthermore, PD patients displayed weakened causal connectivity between the right dlPFC and the left BNST, the left dlPFC and the right BNST, the left BNST and the left dorsomedial prefrontal cortex (dmPFC), right insula, right fusiform, and right BNST to the right insula. The results suggest that PD strongly correlates with increased causal connectivity between emotional processing regions and the BNST and enhanced causal connectivity between the BNST and cognitive control regions.
Collapse
Affiliation(s)
- Manlong Pang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ziyu Hao
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjun Teng
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Li
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Chaoyong Xiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China. .,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China. .,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China. .,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Somatostatin Neurons of the Bed Nucleus of Stria Terminalis Enhance Associative Fear Memory Consolidation in Mice. J Neurosci 2021; 41:1982-1995. [PMID: 33468566 DOI: 10.1523/jneurosci.1944-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Excessive fear learning and generalized, extinction-resistant fear memories are core symptoms of anxiety and trauma-related disorders. Despite significant evidence from clinical studies reporting hyperactivity of the bed nucleus of stria terminalis (BNST) under these conditions, the role of BNST in fear learning and expression is still not clarified. Here, we tested how BNST modulates fear learning in male mice using a chemogenetic approach. Activation of GABAergic neurons of BNST during fear conditioning or memory consolidation resulted in enhanced cue-related fear recall. Importantly, BNST activation had no acute impact on fear expression during conditioning or recalls, but it enhanced cue-related fear recall subsequently, potentially via altered activity of downstream regions. Enhanced fear memory consolidation could be replicated by selectively activating somatostatin (SOM), but not corticotropin-releasing factor (CRF), neurons of the BNST, which was accompanied by increased fear generalization. Our findings suggest the significant modulation of fear memory strength by specific circuits of the BNST.SIGNIFICANCE STATEMENT The bed nucleus of stria terminalis (BNST) mediates different defensive behaviors, and its connections implicate its integrative modulatory role in fear memory formation; however, the involvement of BNST in fear learning has yet to be elucidated in detail. Our data highlight that BNST stimulation enhances fear memory formation without direct effects on fear expression. Our study identified somatostatin (SOM) cells within the extended amygdala as specific neurons promoting fear memory formation. These data underline the importance of anxiety circuits in maladaptive fear memory formation, indicating elevated BNST activity as a potential vulnerability factor to anxiety and trauma-related disorders.
Collapse
|
21
|
Lai CH. Biomarkers in Panic Disorder. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999200918163245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Panic disorder (PD) is a kind of anxiety disorder that impacts the life quality
and functional perspectives in patients. However, the pathophysiological study of PD seems still
inadequate and many unresolved issues need to be clarified.
Objectives:
In this review article of biomarkers in PD, the investigator will focus on the findings of
magnetic resonance imaging (MRI) of the brain in the pathophysiology study. The MRI biomarkers
would be divided into several categories, on the basis of structural and functional perspectives.
Methods:
The structural category would include the gray matter and white matter tract studies. The
functional category would consist of functional MRI (fMRI), resting-state fMRI (Rs-fMRI), and
magnetic resonance spectroscopy (MRS). The PD biomarkers revealed by the above methodologies
would be discussed in this article.
Results:
For the gray matter perspectives, the PD patients would have alterations in the volumes of
fear network structures, such as the amygdala, parahippocampal gyrus, thalamus, anterior cingulate
cortex, insula, and frontal regions. For the white matter tract studies, the PD patients seemed to have
alterations in the fasciculus linking the fear network regions, such as the anterior thalamic radiation,
uncinate fasciculus, fronto-occipital fasciculus, and superior longitudinal fasciculus. For the fMRI
studies in PD, the significant results also focused on the fear network regions, such as the amygdala,
hippocampus, thalamus, insula, and frontal regions. For the Rs-fMRI studies, PD patients seemed to
have alterations in the regions of the default mode network and fear network model. At last, the
MRS results showed alterations in neuron metabolites of the hippocampus, amygdala, occipital
cortex, and frontal regions.
Conclusion:
The MRI biomarkers in PD might be compatible with the extended fear network model
hypothesis in PD, which included the amygdala, hippocampus, thalamus, insula, frontal regions, and
sensory-related cortex.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Maita I, Bazer A, Blackford JU, Samuels BA. Functional anatomy of the bed nucleus of the stria terminalis-hypothalamus neural circuitry: Implications for valence surveillance, addiction, feeding, and social behaviors. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:403-418. [PMID: 34225978 DOI: 10.1016/b978-0-12-819975-6.00026-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a medial basal forebrain structure that modulates the hypothalamo-pituitary-adrenal (HPA) axis. The heterogeneous subnuclei of the BNST integrate inputs from mood and reward-related areas and send direct inhibitory projections to the hypothalamus. The connections between the BNST and hypothalamus are conserved across species, promote activation of the HPA axis, and can increase avoidance of aversive environments, which is historically associated with anxiety behaviors. However, BNST-hypothalamus circuitry is also implicated in motivated behaviors, drug seeking, feeding, and sexual behavior. These complex and diverse roles, as well its sexual dimorphism, indicate that the BNST-hypothalamus circuitry is an essential component of the neural circuitry that may underlie various psychiatric diseases, ranging from anorexia to anxiety to addiction. The following review is a cross-species exploration of BNST-hypothalamus circuitry. First, we describe the BNST subnuclei, microcircuitry and complex reciprocal connections with the hypothalamus. We will then discuss the behavioral functions of BNST-hypothalamus circuitry, including valence surveillance, addiction, feeding, and social behavior. Finally, we will address sex differences in morphology and function of the BNST and hypothalamus.
Collapse
Affiliation(s)
- Isabella Maita
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Allyson Bazer
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Research Health Scientist, Tennessee Valley HealthCare System, US Department of Veterans Affairs, Nashville, TN, United States
| | | |
Collapse
|
23
|
Hulsman AM, Terburg D, Roelofs K, Klumpers F. Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:419-432. [PMID: 34225979 DOI: 10.1016/b978-0-12-819975-6.00027-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays a critical modulatory role in driving fear responses. Part of the so-called extended amygdala, this region shares many functions and connections with the substantially more investigated amygdala proper. In this chapter, we review contributions of the BNST and amygdala to subjective, behavioral, and physiological aspects of fear. Despite the fact that both regions are together involved in each of these aspects of fear, they appear complimentary in their contributions. Specifically, the basolateral amygdala (BLA), through its connections to sensory and orbitofrontal regions, is ideally poised for fast learning and controlling fear reactions in a variety of situations. The central amygdala (CeA) relies on BLA input and is particularly important for adjusting physiological and behavioral responses under acute threat. In contrast, the BNST may profit from more extensive striatal and dorsomedial prefrontal connections to drive anticipatory responses under more ambiguous conditions that allow more time for planning. Thus current evidence suggests that the BNST is ideally suited to play a critical role responding to distant or ambiguous threats and could thereby facilitate goal-directed defensive action.
Collapse
Affiliation(s)
- Anneloes M Hulsman
- Experimental Psychopathology & Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands; Affective Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - David Terburg
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Karin Roelofs
- Experimental Psychopathology & Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands; Affective Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Floris Klumpers
- Experimental Psychopathology & Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands; Affective Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Luyck K, Scheyltjens I, Nuttin B, Arckens L, Luyten L. c-Fos expression following context conditioning and deep brain stimulation in the bed nucleus of the stria terminalis in rats. Sci Rep 2020; 10:20529. [PMID: 33239732 PMCID: PMC7688637 DOI: 10.1038/s41598-020-77603-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) in the bed nucleus of the stria terminalis (BST), a region implicated in the expression of anxiety, shows promise in psychiatric patients, but its effects throughout the limbic system are largely unknown. In male Wistar rats, we first evaluated the neural signature of contextual fear (N = 16) and next, of the anxiolytic effects of high-frequency electrical stimulation in the BST (N = 31), by means of c-Fos protein expression. In non-operated animals, we found that the left medial anterior BST displayed increased c-Fos expression in anxious (i.e., context-conditioned) versus control subjects. Moreover, control rats showed asymmetric expression in the basolateral amygdala (BLA) (i.e., higher intensities in the right hemisphere), which was absent in anxious animals. The predominant finding in rats receiving bilateral BST stimulation was a striking increase in c-Fos expression throughout much of the left hemisphere, which was not confined to the predefined regions of interest. To conclude, we found evidence for lateralized c-Fos expression during the expression of contextual fear and anxiolytic high-frequency electrical stimulation of the BST, particularly in the medial anterior BST and BLA. In addition, we observed an extensive and unexpected left-sided c-Fos spread following bilateral stimulation in the BST.
Collapse
Affiliation(s)
- Kelly Luyck
- Experimental Neurosurgery and Neuroanatomy, KU Leuven, UZ Herestraat 49, PB 7003, 3000, Leuven, Belgium
| | - Isabelle Scheyltjens
- Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, PB 2467, 3000, Leuven, Belgium
- VIB Center for Inflammation Research, Vrije Universiteit Brussel, Myeloid Cell Immunology, Pleinlaan 2, 1050, Brussel, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, KU Leuven, UZ Herestraat 49, PB 7003, 3000, Leuven, Belgium
| | - Lutgarde Arckens
- Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, PB 2467, 3000, Leuven, Belgium
- Leuven Brain Institute, Herestraat 49, PB 1021, 3000, Leuven, Belgium
| | - Laura Luyten
- Experimental Neurosurgery and Neuroanatomy, KU Leuven, UZ Herestraat 49, PB 7003, 3000, Leuven, Belgium.
- Leuven Brain Institute, Herestraat 49, PB 1021, 3000, Leuven, Belgium.
- Centre for Psychology of Learning and Experimental Psychopathology, KU Leuven, Tiensestraat 102, PB 3712, 3000, Leuven, Belgium.
| |
Collapse
|
25
|
Hofmann D, Straube T. Effective connectivity between bed nucleus of the stria terminalis and amygdala: Reproducibility and relation to anxiety. Hum Brain Mapp 2020; 42:824-836. [PMID: 33155747 PMCID: PMC7814768 DOI: 10.1002/hbm.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
In a previous study, we investigated the resting‐state fMRI effective connectivity (EC) between the bed nucleus of the stria terminalis (BNST) and the laterobasal (LB), centromedial (CM), and superficial (SF) amygdala. We found strong negative EC from all amygdala nuclei to the BNST, while the BNST showed positive EC to the amygdala. However, the validity of these findings remains unclear, since a reproduction in different samples has not been done. Moreover, the association of EC with measures of anxiety offers deeper insight, due to the known role of the BNST and amygdala in fear and anxiety. Here, we aimed to reproduce our previous results in three additional samples. We used spectral Dynamic Causal Modeling to estimate the EC between the BNST, the LB, CM, and SF, and its association with two measures of self‐reported anxiety. Our results revealed consistency over samples with regard to the negative EC from the amygdala nuclei to the BNST, while the positive EC from BNST to the amygdala was also found, but weaker and more heterogenic. Moreover, we found the BNST‐BNST EC showing a positive and the CM‐BNST EC, showing a negative association with anxiety. Our study suggests a reproducible pattern of negative EC from the amygdala to the BNST along with weaker positive EC from the BNST to the amygdala. Moreover, less BNST self‐inhibition and more inhibitory influence from the CM to the BNST seems to be a pattern of EC that is related to higher anxiety.
Collapse
Affiliation(s)
- David Hofmann
- University Hospital Muenster, Institute of Medical Psychology and Systems Neuroscience, Muenster, Germany
| | - Thomas Straube
- University Hospital Muenster, Institute of Medical Psychology and Systems Neuroscience, Muenster, Germany
| |
Collapse
|
26
|
Grillon C, Ernst M. A way forward for anxiolytic drug development: Testing candidate anxiolytics with anxiety-potentiated startle in healthy humans. Neurosci Biobehav Rev 2020; 119:348-354. [PMID: 33038346 DOI: 10.1016/j.neubiorev.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
This review introduces a research strategy that may radically transform the pursuit of new anxiolytics, via the use of human models of anxiety in healthy individuals. Despite enormous investments in developing novel pharmacological treatments for anxiety disorders, pharmacotherapy for these conditions remains suboptimal. Most candidate anxiolytics from animal studies fail in clinical trials. We propose an additional screening step to help select candidate anxiolytics before launching clinical trials. This intermediate step moves the evidence for the potential anxiolytic property of candidate drugs from animals to humans, using experimental models of anxiety in healthy individuals. Anxiety-potentiated startle is a robust translational model of anxiety. The review of its face, construct, and predictive validity as well as its psychometric properties in humans establishes it as a promising tool for anxiolytic drug development. In conclusion, human models of anxiety may stir a faster, more efficient path for the development of clinically effective anxiolytics.
Collapse
Affiliation(s)
- Christian Grillon
- National Institute of Mental Health, Section on the Neurobiology of Fear and Anxiety, Building 15K, Room 203, Bethesda, MD 20814 USA.
| | - Monique Ernst
- National Institute of Mental Health, Section on the Neurobiology of Fear and Anxiety, Building 15K, Room 203, Bethesda, MD 20814 USA.
| |
Collapse
|
27
|
Siminski N, Böhme S, Zeller JBM, Becker MPI, Bruchmann M, Hofmann D, Breuer F, Mühlberger A, Schiele MA, Weber H, Schartner C, Deckert J, Pauli P, Reif A, Domschke K, Straube T, Herrmann MJ. BNST and amygdala activation to threat: Effects of temporal predictability and threat mode. Behav Brain Res 2020; 396:112883. [PMID: 32860830 DOI: 10.1016/j.bbr.2020.112883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/28/2022]
Abstract
Recent animal and human studies highlight the uncertainty about the onset of an aversive event as a crucial factor for the involvement of the centromedial amygdala (CM) and bed nucleus of the stria terminalis (BNST) activity. However, studies investigating temporally predictable or unpredictable threat anticipation and confrontation processes are rare. Furthermore, the few existing fMRI studies analyzing temporally predictable and unpredictable threat processes used small sample sizes or limited fMRI paradigms. Therefore, we measured functional brain activity in 109 predominantly female healthy participants during a temporally predictable-unpredictable threat paradigm, which aimed to solve limited aspects of recent studies. Results showed higher BNST activity compared to the CM during the cue indicating that the upcoming confrontation is aversive relative to the cue indicating an upcoming neutral confrontation. Both the CM and BNST showed higher activity during the confrontation with unpredictable and aversive stimuli, but the reaction to aversive confrontation relative to neutral confrontation was stronger in the CM compared to the BNST. Additional modulation analyses by NPSR1 rs324981 genotype revealed higher BNST activity relative to the CM in unpredictable anticipation relative to predictable anticipation in T-carriers compared to AA carriers. Our results indicate that during the confrontation with aversive or neutral stimuli, temporal unpredictability modulates CM and BNST activity. Further, there is a differential activity concerning threat processing, as BNST is more involved when focussing on fear-related anticipation processes and CM is more involved when focussing on threat confrontation.
Collapse
Affiliation(s)
- N Siminski
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - S Böhme
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Regensburg, Regensburg, Germany; Department of Clinical Psychology and Psychotherapy, University of Erlangen, Erlangen, Germany
| | - J B M Zeller
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - M P I Becker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - M Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - D Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - F Breuer
- Fraunhofer Institute for Integrated Circuits (IIS), Development Center for X-ray Technology (EZRT), Wuerzburg, Germany
| | - A Mühlberger
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - M A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Weber
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - C Schartner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Deckert
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - P Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Wuerzburg, Wuerzburg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - K Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuro Modulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - M J Herrmann
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
28
|
Flook EA, Feola B, Avery SN, Winder DG, Woodward ND, Heckers S, Blackford JU. BNST-insula structural connectivity in humans. Neuroimage 2020; 210:116555. [PMID: 31954845 PMCID: PMC7089680 DOI: 10.1016/j.neuroimage.2020.116555] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/10/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is emerging as a critical region in multiple psychiatric disorders including anxiety, PTSD, and alcohol and substance use disorders. In conjunction with growing knowledge of the BNST, an increasing number of studies examine connections of the BNST and how those connections impact BNST function. The importance of this BNST network is highlighted by rodent studies demonstrating that projections from other brain regions regulate BNST activity and influence BNST-related behavior. While many animal and human studies replicate the components of the BNST network, to date, structural connections between the BNST and insula have only been described in rodents and have yet to be shown in humans. In this study, we used probabilistic tractography to examine BNST-insula structural connectivity in humans. We used two methods of dividing the insula: 1) anterior and posterior insula, to be consistent with much of the existing insula literature; and 2) eight subregions that represent informative cytoarchitectural divisions. We found evidence of a BNST-insula structural connection in humans, with the strongest BNST connectivity localized to the anteroventral insula, a region of agranular cortex. BNST-insula connectivity differed by hemisphere and was moderated by sex. These results translate rodent findings to humans and lay an important foundation for future studies examining the role of BNST-insula pathways in psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Flook
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danny G Winder
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Research and Development, Department of Veterans Affairs Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Brehl AK, Kohn N, Schene AH, Fernández G. A mechanistic model for individualised treatment of anxiety disorders based on predictive neural biomarkers. Psychol Med 2020; 50:727-736. [PMID: 32204741 PMCID: PMC7168651 DOI: 10.1017/s0033291720000410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/09/2019] [Accepted: 02/09/2020] [Indexed: 12/29/2022]
Abstract
Increased amygdala responsiveness is the hallmark of fear and a characteristic across patients with anxiety disorders. The amygdala is embedded in a complex regulatory circuit. Multiple different mechanisms may elevate amygdala responsiveness and lead to the occurrence of an anxiety disorder. While top-down control by the prefrontal cortex (PFC) downregulates amygdala responses, the locus coeruleus (LC) drives up amygdala activation via noradrenergic projections. This indicates that the same fearful phenotype may result from different neural mechanisms. We propose a mechanistic model that defines three different neural biomarkers causing amygdala hyper-responsiveness in patients with anxiety disorders: (a) inherent amygdala hypersensitivity, (b) low prefrontal control and (c) high LC drive. First-line treatment for anxiety disorders is exposure-based cognitive behavioural therapy, which strengthens PFC recruitment during emotion regulation and thus targets low-prefrontal control. A treatment response rate around 50% (Loerinc et al., 2015, Clinical Psychological Reviews, 42, 72-82) might indicate heterogeneity of underlying neurobiological mechanisms among patients, presumably leading to high variation in treatment benefit. Transforming insights from cognitive neuroscience into applicable clinical heuristics to categorise patients based on their underlying biomarker may support individualised treatment selection in psychiatry. We review literature on the three anxiety-related mechanisms and present a mechanistic model that may serve as a rational for pathology-based diagnostic and biomarker-guided treatment selection in psychiatry.
Collapse
Affiliation(s)
- Anne-Kathrin Brehl
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Nils Kohn
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Guillen Fernández
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Jenks SK, Zhang S, Li CSR, Hu S. Threat bias and resting state functional connectivity of the amygdala and bed nucleus stria terminalis. J Psychiatr Res 2020; 122:54-63. [PMID: 31927266 PMCID: PMC7010552 DOI: 10.1016/j.jpsychires.2019.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous research has distinguished the activations of the amygdala and bed nucleus of stria terminalis (BNST) during threat-related contingencies. However, how intrinsic connectivities of the amygdala and BNST relate to threat bias remains unclear. Here, we investigated how resting state functional connectivity (rsFC) of the amygdala and BNST in healthy controls (HC) and patients with anxiety-related disorders (PAD) associate with threat bias in a dot-probe task. METHODS Imaging and behavioral data of 30 PAD and 83 HC were obtained from the Nathan Kline Institute - Rockland sample and processed according to published routines. All imaging results were evaluated at voxel p < 0.001 and cluster p < 0.05, FWE corrected in SPM. RESULTS PAD and HC did not show differences in whole brain rsFC with either the amygdala or BNST. In linear regressions threat bias was positively correlated with amygdala-thalamus/anterior cingulate cortex (ACC) rsFC in HC but not PAD, and with BNST-caudate rsFC in PAD but not HC. Slope tests confirmed group differences in the correlations between threat bias and amygdala-thalamus/ACC as well as BNST-caudate rsFC. LIMITATIONS As only half of the patients included were diagnosed with comorbid anxiety, the current findings need to be considered with the clinical heterogeneity and require replication in populations specifically with anxiety disorders. CONCLUSIONS Together, these results suggest amygdala and BNST connectivities as new neural markers of anxiety disorders. Whereas amygdala-thalamus/ACC rsFC support adaptive regulation of threat response in the HC, BNST-caudate rsFC may reflect maladaptive neural processes that are dominated by anticipatory anxiety.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Psychology, State University of New York at Oswego, Oswego, NY 13126
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, NY, 13126, USA.
| |
Collapse
|
31
|
Task MRI-Based Functional Brain Network of Anxiety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:3-20. [PMID: 32002919 DOI: 10.1007/978-981-32-9705-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetic resonance imaging (MRI) is a good tool for researchers to understand the biological mechanisms and pathophysiology of the brain due to the translational characteristics of MRI methods. For the psychiatric illness, this kind of mental disorders usually have minor alterations when compared to traditional neurological disorders. Therefore the functional study, such as functional connectivity, would play a significant role for understanding the pathophysiology of mental disorders. This chapter would focus on the discussion of task MRI-based functional network studies in anxiety. For social anxiety disorder, the limbic system, such as the temporal lobe, amygdala, and hippocampus, would show alterations in the functional connectivity with frontal regions, such as anterior cingulate, prefrontal, and orbitofrontal cortices. PD has anterior cingulate cortex-amygdala alterations in fear conditioning, frontoparietal alterations in attention network task, and limbic-prefrontal alterations in emotional task. A similar amygdala-based aberrant functional connectivity in specific phobia is observed. The mesocorticolimbic and limbic-prefrontal functional alterations are found in generalized anxiety disorder. The major components of task MRI-based functional connectivity in anxiety include limbic and frontal regions which might play a vital role for the origination of anxiety under different scenarios and tasks.
Collapse
|
32
|
Clauss J. Extending the neurocircuitry of behavioural inhibition: a role for the bed nucleus of the stria terminalis in risk for anxiety disorders. Gen Psychiatr 2019; 32:e100137. [PMID: 31922088 PMCID: PMC6937153 DOI: 10.1136/gpsych-2019-100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Behavioural inhibition is a biologically based risk factor for anxiety disorders. Children with behavioural inhibition are shy, cautious and avoidant of new situations. Much research on behavioural inhibition has focused on the amygdala as an underlying neural substrate and has identified differences in amygdala function and volume; however, amygdala findings have yet to lead to meaningful interventions for prevention or treatment of anxiety disorders. The bed nucleus of the stria terminalis (BNST) is a prime candidate to be a neural substrate of behavioural inhibition, given current evidence of BNST function and development in human research and animal models. Children with behavioural inhibition have an increased startle response to safety cues and an increased cortisol response to social evaluative situations, both of which are mediated by the BNST. In rodents, activation of the BNST underlies contextual fear responses and responses to uncertain and sustained threat. Non-human primates with anxious temperament (the macaque equivalent of behavioural inhibition) have increased BNST activity to ambiguous social situations, and activity of the BNST in anxious temperament is significantly heritable. Importantly, the BNST is sexually dimorphic and continues to develop into adulthood, paralleling the development of anxiety disorders in humans. Together, these findings suggest that further investigation of the BNST in behavioural inhibition is necessary and may lead to new avenues for the prevention and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jacqueline Clauss
- Child and Adolescent Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Child and Adolescent Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
33
|
Grillon C, Robinson OJ, Cornwell B, Ernst M. Modeling anxiety in healthy humans: a key intermediate bridge between basic and clinical sciences. Neuropsychopharmacology 2019; 44:1999-2010. [PMID: 31226707 PMCID: PMC6897969 DOI: 10.1038/s41386-019-0445-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Animal models of anxiety disorders are important for elucidating neurobiological defense mechanisms. However, animal models are limited when it comes to understanding the more complex processes of anxiety that are unique to humans (e.g., worry) and to screen new treatments. In this review, we outline how the Experimental Psychopathology approach, based on experimental models of anxiety in healthy subjects, can mitigate these limitations and complement research in animals. Experimental psychopathology can bridge basic research in animals and clinical studies, as well as guide and constrain hypotheses about the nature of psychopathology, treatment mechanisms, and treatment targets. This review begins with a brief review of the strengths and limitations of animal models before discussing the need for human models of anxiety, which are especially necessary to probe higher-order cognitive processes. This can be accomplished by combining anxiety-induction procedures with tasks that probe clinically relevant processes to identify neurocircuits that are potentially altered by anxiety. The review then discusses the validity of experimental psychopathology and introduces a methodological approach consisting of five steps: (1) select anxiety-relevant cognitive or behavioral operations and associated tasks, (2) identify the underlying neurocircuits supporting these operations in healthy controls, 3) examine the impact of experimental anxiety on the targeted operations in healthy controls, (4) utilize findings from step 3 to generate hypotheses about neurocircuit dysfunction in anxious patients, and 5) evaluate treatment mechanisms and screen novel treatments. This is followed by two concrete illustrations of this approach and suggestions for future studies.
Collapse
Affiliation(s)
- Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA.
| | - Oliver J Robinson
- University College London, Institute of Cognitive Neuroscience, London, UK
| | - Brian Cornwell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Goode TD, Ressler RL, Acca GM, Miles OW, Maren S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. eLife 2019; 8:46525. [PMID: 30946011 PMCID: PMC6456295 DOI: 10.7554/elife.46525] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) has been implicated in conditioned fear and anxiety, but the specific factors that engage the BNST in defensive behaviors are unclear. Here we examined whether the BNST mediates freezing to conditioned stimuli (CSs) that poorly predict the onset of aversive unconditioned stimuli (USs) in rats. Reversible inactivation of the BNST selectively reduced freezing to CSs that poorly signaled US onset (e.g., a backward CS that followed the US), but did not eliminate freezing to forward CSs even when they predicted USs of variable intensity. Additionally, backward (but not forward) CSs selectively increased Fos in the ventral BNST and in BNST-projecting neurons in the infralimbic region of the medial prefrontal cortex (mPFC), but not in the hippocampus or amygdala. These data reveal that BNST circuits regulate fear to unpredictable threats, which may be critical to the etiology and expression of anxiety.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Reed L Ressler
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Gillian M Acca
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Olivia W Miles
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| |
Collapse
|
35
|
Hofmann D, Straube T. Resting-state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Hum Brain Mapp 2019; 40:2723-2735. [PMID: 30829454 DOI: 10.1002/hbm.24555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) and the laterobasal nucleus (LB), centromedial nucleus (CM), and superficial nucleus (SF) of the amygdala form an interconnected dynamical system, whose combined activity mediates a variety of behavioral and autonomic responses in reaction to homeostatic challenges. Although previous research provided deeper insight into the structural and functional connections between these nuclei, studies investigating their resting-state functional magnetic resonance imaging (fMRI) connectivity were solely based on undirected connectivity measures. Here, we used high-quality data of 391 subjects from the Human Connectome Project to estimate the effective connectivity (EC) between the BNST, the LB, CM, and SF through spectral dynamic causal modeling, the relation of the EC estimates with age and sex as well as their stability over time. Our results reveal a time-stable asymmetric EC structure with positive EC between all amygdala nuclei, which strongly inhibited the BNST while the BNST exerted positive influence onto all amygdala nuclei. Simulation of the impulse response of the estimated system showed that this EC structure shapes partially antagonistic (out of phase) activity flow between the BNST and amygdala nuclei. Moreover, the BNST-LB and BNST-CM EC parameters were less negative in males. In conclusion, our data points toward partially separated information processing between BNST and amygdala nuclei in the resting-state.
Collapse
Affiliation(s)
- David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
36
|
Phasic amygdala and BNST activation during the anticipation of temporally unpredictable social observation in social anxiety disorder patients. NEUROIMAGE-CLINICAL 2019; 22:101735. [PMID: 30878610 PMCID: PMC6423472 DOI: 10.1016/j.nicl.2019.101735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023]
Abstract
Anticipation of potentially threatening social situations is a key process in social anxiety disorder (SAD). In other anxiety disorders, recent research of neural correlates of anticipation of temporally unpredictable threat suggests a temporally dissociable involvement of amygdala and bed nucleus of the stria terminalis (BNST) with phasic amygdala responses and sustained BNST activation. However, the temporal profile of amygdala and BNST responses during temporal unpredictability of threat has not been investigated in patients suffering from SAD. We used functional magnetic resonance imaging (fMRI) to investigate neural activation in the central nucleus of the amygdala (CeA) and the BNST during anticipation of temporally unpredictable aversive (video camera observation) relative to neutral (no camera observation) events in SAD patients compared to healthy controls (HC). For the analysis of fMRI data, we applied two regressors (phasic/sustained) within the same model to detect temporally dissociable brain responses. The aversive condition induced increased anxiety in patients compared to HC. SAD patients compared to HC showed increased phasic activation in the CeA and the BNST for anticipation of aversive relative to neutral events. SAD patients as well as HC showed sustained activity alterations in the BNST for aversive relative to neutral anticipation. No differential activity during sustained threat anticipation in SAD patients compared to HC was found. Taken together, our study reveals both CeA and BNST involvement during threat anticipation in SAD patients. The present results point towards potentially SAD-specific threat processing marked by elevated phasic but not sustained CeA and BNST responses when compared to HC. fMRI in SAD during anticipation of temporally unpredictable aversive events. Anticipation of social observation induces increased anxiety in SAD patients. SAD patients show elevated phasic activity in fundamental anxiety network regions. Evidence of SAD-specific threat processing.
Collapse
|
37
|
Burkhardt A, Buff C, Brinkmann L, Feldker K, Gathmann B, Hofmann D, Straube T. Brain activation during disorder-related script-driven imagery in panic disorder: a pilot study. Sci Rep 2019; 9:2415. [PMID: 30787382 PMCID: PMC6382839 DOI: 10.1038/s41598-019-38990-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023] Open
Abstract
Despite considerable effort, the neural correlates of altered threat-related processing in panic disorder (PD) remain inconclusive. Mental imagery of disorder-specific situations proved to be a powerful tool to investigate dysfunctional threat processing in anxiety disorders. The current functional magnetic resonance imaging (fMRI) study aimed at investigating brain activation in PD patients during disorder-related script-driven imagery. Seventeen PD patients and seventeen healthy controls (HC) were exposed to newly developed disorder-related and neutral narrative scripts while brain activation was measured with fMRI. Participants were encouraged to imagine the narrative scripts as vividly as possible and they rated their script-induced emotional states after the scanning session. PD patients rated disorder-related scripts as more arousing, unpleasant and anxiety-inducing as compared to HC. Patients relative to HC showed elevated activity in the right amygdala and the brainstem as well as decreased activity in the rostral anterior cingulate cortex, and the medial and lateral prefrontal cortex to disorder-related vs. neutral scripts. The results suggest altered amygdala/ brainstem and prefrontal cortex engagement and point towards the recruitment of brain networks with opposed activation patterns in PD patients during script-driven imagery.
Collapse
Affiliation(s)
- Alexander Burkhardt
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Muenster, Germany.
| | - Christine Buff
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Muenster, Germany
| | - Leonie Brinkmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Muenster, Germany
| | - Katharina Feldker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Muenster, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Muenster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Von-Esmarch-Str. 52, 48149, Muenster, Germany
| |
Collapse
|
38
|
Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neurosci Lett 2019; 693:58-67. [PMID: 29195911 PMCID: PMC5976525 DOI: 10.1016/j.neulet.2017.11.056] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/30/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022]
Abstract
Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Mechanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies.
Collapse
Affiliation(s)
- Andrew S Fox
- Department of Psychology and University of California, Davis, CA 95616, United States; California National Primate Research Center, University of California, Davis, CA 95616, United States.
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, United States; Maryland Neuroimaging Center, University of Maryland,College Park, MD 20742, United States.
| |
Collapse
|
39
|
Tillman GD, Spence JS, Briggs RW, Haley RW, Hart J, Kraut MA. Gulf War illness associated with abnormal auditory P1 event-related potential: Evidence of impaired cholinergic processing replicated in a national sample. Psychiatry Res Neuroimaging 2019; 283:7-15. [PMID: 30453127 DOI: 10.1016/j.pscychresns.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/05/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Our team previously reported event-related potential (ERP) and hyperarousal patterns from a study of one construction battalion of the U.S. Naval Reserve who served during the 1991 Persian Gulf War. We sought to replicate these findings in a sample that was more representative of the entire Gulf War-era veteran population, including male and female participants from four branches of the military. We collected ERP data from 40 veterans meeting Haley criteria for Gulf War syndromes 1-3 and from 22 matched Gulf War veteran controls while they performed an auditory oddball task. Reports of hyperarousal from the ill veterans were significantly greater than those from the control veterans, and P1 amplitudes in Syndromes 2 and 3 were significantly higher than P1 amplitudes in Syndrome 1, replicating our previous findings. Many of the contributors to the generation of the P1 potential are also involved in the regulation of arousal and are modulated by cholinergic and dopaminergic systems-two systems whose dysfunction has been implicated in Gulf War illness. These differences among the three syndrome groups where their means were on either side of controls is a replication of our previous ERP study and is consistent with previous imaging studies of this population.
Collapse
Affiliation(s)
- Gail D Tillman
- Center for BrainHealth, The University of Texas at Dallas
| | - Jeffrey S Spence
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Richard W Briggs
- Departments of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert W Haley
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John Hart
- Center for BrainHealth, The University of Texas at Dallas; Departments of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Michael A Kraut
- Center for BrainHealth, The University of Texas at Dallas; Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Knight LK, Depue BE. New Frontiers in Anxiety Research: The Translational Potential of the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2019; 10:510. [PMID: 31379626 PMCID: PMC6650589 DOI: 10.3389/fpsyt.2019.00510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
After decades of being overshadowed by the amygdala, new perspectives suggest that a tiny basal forebrain region known as the bed nucleus of the stria terminalis (BNST) may hold key insights into understanding and treating anxiety disorders. Converging research indicates that the amygdala and BNST play complementary but distinct functional roles during threat processing, with the BNST specializing in the detection of a potential threat to maintain hypervigilance and anxiety, while the amygdala responds to the perceived presence of an aversive stimulus (i.e., fear). Therefore, given that human anxiety is largely driven by future-oriented hypothetical threats that may never occur, studies involving the BNST stand at the forefront of essential future research with the potential to bring about profound insights for understanding and treating anxiety disorders. In this article, we present a narrative review on the BNST, summarizing its roles in anxiety and the stress response and highlighting the most recent advances in the clinical realm. Furthermore, we discuss oversights in the current state of anxiety research and identify avenues for future exploration.
Collapse
Affiliation(s)
- Lindsay K Knight
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States.,Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Brendan E Depue
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
41
|
Herrmann MJ, Simons BS, Horst AK, Boehme S, Straube T, Polak T. Modulation of sustained fear by transcranial direct current stimulation (tDCS) of the right inferior frontal cortex (rIFC). Biol Psychol 2018; 139:173-177. [DOI: 10.1016/j.biopsycho.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/11/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
|
42
|
Luyck K, Goode TD, Lee Masson H, Luyten L. Distinct Activity Patterns of the Human Bed Nucleus of the Stria Terminalis and Amygdala during Fear Learning. Neuropsychol Rev 2018; 29:181-185. [PMID: 30229440 DOI: 10.1007/s11065-018-9383-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
The amygdala and, more recently, also the bed nucleus of the stria terminalis, have been widely implicated in fear and anxiety. Much of our current knowledge is derived from animal studies and suggests an intricate convergence and divergence in functions related to defensive responding. In a recent paper, Klumpers and colleagues set out to examine these functions in a human fear learning procedure using functional magnetic resonance imaging. Their main findings were a role for the bed nucleus of the stria terminalis in threat anticipation, and for the amygdala in threat confrontation. Here, we provide a critical summary of this interesting study and point out some important issues that were not addressed by its authors. In particular, we first take a closer look at the striking differences between both samples that were combined for the study, and, secondly, we provide an in-depth discussion of their findings in relation to existing neurobehavioral models.
Collapse
Affiliation(s)
- Kelly Luyck
- Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, 3000, Leuven, Belgium
| | - Travis D Goode
- Institute for Neuroscience and Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843-3474, USA
| | - Haemy Lee Masson
- Laboratory for Biological Psychology, KU Leuven, 3000, Leuven, Belgium
| | - Laura Luyten
- Centre for Psychology of Learning and Experimental Psychopathology, KU Leuven, Tiensestraat 102 PB 3712, 3000, Leuven, Belgium.
| |
Collapse
|
43
|
Buff C, Brinkmann L, Bruchmann M, Becker MPI, Tupak S, Herrmann MJ, Straube T. Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder. Soc Cogn Affect Neurosci 2018; 12:1766-1774. [PMID: 28981839 PMCID: PMC5714227 DOI: 10.1093/scan/nsx103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/17/2017] [Indexed: 11/14/2022] Open
Abstract
Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD.
Collapse
Affiliation(s)
- Christine Buff
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, 48149 Muenster, Germany
| | - Leonie Brinkmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, 48149 Muenster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, 48149 Muenster, Germany
| | - Michael P I Becker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, 48149 Muenster, Germany
| | - Sara Tupak
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, 48149 Muenster, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinic Wuerzburg, 97080 Wuerzburg, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
44
|
Dittert N, Hüttner S, Polak T, Herrmann MJ. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS). Front Behav Neurosci 2018; 12:76. [PMID: 29922133 PMCID: PMC5996916 DOI: 10.3389/fnbeh.2018.00076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Although posttraumatic stress disorder (PTSD; DSM-V 309.82) and anxiety disorders (DSM-V 300.xx) are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS) might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS) and a 95-dB female scream as unconditioned stimulus (UCS). We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC), which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR) and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84). The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be tested in a clinical context further investigation is needed to assess the reason for the reaction increase on CS–. If this negative side effect can be avoided, tDCS may be a tool to improve exposure-based anxiety therapies.
Collapse
Affiliation(s)
- Natalie Dittert
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Sandrina Hüttner
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Polak
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Tillman RM, Stockbridge MD, Nacewicz BM, Torrisi S, Fox AS, Smith JF, Shackman AJ. Intrinsic functional connectivity of the central extended amygdala. Hum Brain Mapp 2018; 39:1291-1312. [PMID: 29235190 PMCID: PMC5807241 DOI: 10.1002/hbm.23917] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)-plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community-dwelling adults. Multiband imaging, high-precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole-brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with "deidentified" neuroimaging data.
Collapse
Affiliation(s)
| | - Melissa D. Stockbridge
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMaryland20742
| | - Brendon M. Nacewicz
- Department of PsychiatryUniversity of Wisconsin—Madison, 6001 Research Park BoulevardMadisonWisconsin53719
| | - Salvatore Torrisi
- Section on the Neurobiology of Fear and AnxietyNational Institute of Mental HealthBethesdaMaryland20892
| | - Andrew S. Fox
- Department of PsychologyUniversity of CaliforniaDavisCalifornia95616
- California National Primate Research CenterUniversity of CaliforniaDavisCalifornia95616
| | - Jason F. Smith
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
| | - Alexander J. Shackman
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland20742
- Maryland Neuroimaging CenterUniversity of MarylandCollege ParkMaryland20742
| |
Collapse
|
46
|
Brinkmann L, Buff C, Feldker K, Neumeister P, Heitmann CY, Hofmann D, Bruchmann M, Herrmann MJ, Straube T. Inter-individual differences in trait anxiety shape the functional connectivity between the bed nucleus of the stria terminalis and the amygdala during brief threat processing. Neuroimage 2018; 166:110-116. [DOI: 10.1016/j.neuroimage.2017.10.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/27/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
|
47
|
Goode TD, Maren S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn Mem 2017; 24:480-491. [PMID: 28814474 PMCID: PMC5580527 DOI: 10.1101/lm.044206.116] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023]
Abstract
Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the "affective forebrain"-including the amygdala, ventral hippocampus, and medial prefrontal cortex-and the hypothalamic and brainstem areas that have been implicated in neuroendocrine, autonomic, and behavioral responses to actual or anticipated threats. However, the precise contribution of the BNST to defensive behavior is unclear, both in terms of the antecedent stimuli that mobilize BNST activity and the consequent defensive reactions. For example, it is well known that the BNST is essential for contextual fear conditioning, but dispensable for fear conditioning to discrete conditioned stimuli (CSs), at least as indexed by freezing behavior. However, recent evidence suggests that there are circumstances in which contextual freezing may persist independent of the BNST. Furthermore, the BNST is involved in the reinstatement (or relapse) of conditioned freezing to extinguished discrete CSs. As such, there are critical gaps in understanding how the BNST contributes to fundamental processes involved in Pavlovian fear conditioning. Here, we attempt to provide an integrative account of BNST function in fear conditioning. We discuss distinctions between unconditioned stress and conditioned fear and the role of BNST circuits in organizing behaviors associated with these states. We propose that the BNST mediates conditioned defensive responses-not based on the modality or duration of the antecedent threat or the duration of the behavioral response to the threat-but rather as consequence the ability of an antecedent stimulus to predict when an aversive outcome will occur (i.e., its temporal predictability). We argue that the BNST is not uniquely mobilized by sustained threats or uniquely involved in organizing sustained fear responses. In contrast, we argue that the BNST is involved in organizing fear responses to stimuli that poorly predict when danger will occur, no matter the duration, modality, or complexity of those stimuli. The concepts discussed in this review are critical to understanding the contribution of the human BNST to fear and anxiety disorders.
Collapse
Affiliation(s)
- Travis D Goode
- Institute for Neuroscience and the Department of Psychology, Texas A&M University, College Station, Texas 77843-3474, USA
| | - Stephen Maren
- Institute for Neuroscience and the Department of Psychology, Texas A&M University, College Station, Texas 77843-3474, USA
| |
Collapse
|