1
|
Radecki MA, Maurer JM, Harenski KA, Stephenson DD, Sampaolo E, Lettieri G, Handjaras G, Ricciardi E, Rodriguez SN, Neumann CS, Harenski CL, Palumbo S, Pellegrini S, Decety J, Pietrini P, Kiehl KA, Cecchetti L. Cortical structure in relation to empathy and psychopathy in 800 incarcerated men. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.14.543399. [PMID: 40236099 PMCID: PMC11996374 DOI: 10.1101/2023.06.14.543399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Reduced affective empathy is a hallmark of psychopathy, which incurs major interpersonal and societal costs. Advancing our neuroscientific understanding of this reduction and other psychopathic traits is crucial for improving their treatment. Methods In 804 incarcerated adult men, we administered the Perspective Taking (IRI-PT) and Empathic Concern (IRI-EC) subscales of the Interpersonal Reactivity Index, Hare Psychopathy Checklist-Revised (PCL-R; two factors), and T1-weighted MRI to quantify cortical thickness (CT) and surface area (SA). We also included the male sample of the Human Connectome Project (HCP; N = 501) to replicate patterns of macroscale structural organization. Results Factor 1 (Interpersonal/Affective) uniquely negatively related to IRI-EC, while Factor 2 (Lifestyle/Antisocial) uniquely negatively related to IRI-PT. Cortical structure did not relate to either IRI subscale, although there was effect-size differentiation by microstructural class and/or functional network. CT related to Factor 1 (mostly positively), SA related to both factors (only positively), and both cortical indices demonstrated out-of-sample predictive utility for Factor 1. The high-psychopathy group (N = 178) scored uniquely lower on IRI-EC while having increased SA (but not CT). Regionally, these SA increases localized primarily in the paralimbic class and somatomotor network, with meta-analytic task-based activations corroborating affective-sensory importance. High psychopathy also showed "compressed" global and/or network-level organization of both cortical indices, and this organization in the total sample replicated in HCP. All findings accounted for age, IQ, and/or total intracranial volume. Conclusions Psychopathy had negative relationships with affective empathy and positive relationships with paralimbic/somatomotor SA, highlighting the role of affect and sensation.
Collapse
|
2
|
Michalareas G, Lehr C, Grabenhorst M, Hecht H. Social processing distorts physical distance perception. Sci Rep 2025; 15:5669. [PMID: 39955347 PMCID: PMC11830008 DOI: 10.1038/s41598-025-89935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Psychopathy is traditionally linked to higher-level cognitive processes, but its impact on low-level cognitive functions has remained largely unexplored. This study investigates the relationship between the fundamental cognitive function of physical distance estimation and our social predisposition towards others, as captured by psychopathic traits, grouped into the three facets of Fearless Dominance, Self-Centered Impulsivity and Coldheartedness. Using an innovative experimental design, participants estimated the distance of an approaching avatar agent. We demonstrate that social processing, as reflected in the scale of Psychopathy in the general population, significantly distorts egocentric space perception. Strikingly, this distortion is absent with non-anthropomorphic agents. The study also reveals that agent emotional expressions do not affect distance estimation, when they are task-irrelevant, suggesting a disocciation between the effect of psychopathic traits on social processing and emotion processing. These results uncover a direct top-down effect of psychopathic traits on basic spatial cognition, in the presence of others. These new insights into the basic cognitive mechanisms underlying social interactions have broader implications for any field involving interpersonal spatial behaviour.
Collapse
Affiliation(s)
- Georgios Michalareas
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
- Ernst Strüngmann Institute (ESI) for Neuroscience, Frankfurt, Germany.
- CoBIC, Medical Faculty, Goethe University, Frankfurt am Main, Germany.
| | - Claudia Lehr
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Psychologisches Institut, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Matthias Grabenhorst
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience, Frankfurt, Germany
- CoBIC, Medical Faculty, Goethe University, Frankfurt am Main, Germany
| | - Heiko Hecht
- Psychologisches Institut, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
3
|
Sipowicz K, Pietras T, Sobstyl M, Mosiołek A, Różycka-Kosmalska M, Mosiołek J, Stefanik-Markowska E, Ring M, Kamecki K, Kosmalski M. Case Studies on Dissocial Personality-Bad or Ill? Healthcare (Basel) 2024; 13:58. [PMID: 39791665 PMCID: PMC11720162 DOI: 10.3390/healthcare13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Dissocial personality is understood as a personality that does not ideologize most social norms and is characterized by a lack of empathy. Precise criteria for diagnosing dissocial personality are included in the ICD-10 classification, which is still in force in Poland. This classification is widely available in both Polish and English. In Poland, there is a fairly wide range of assistance available for people with personality disorders in day care units and 24-h wards for the treatment of personality disorders. Unfortunately, due to some antisocial behaviors that violate the criminal law in force in Poland, people with dissocial personality are placed in prisons. The development of dissocial personality depends on both genetic factors and the demoralizing influence of the social environment. The mutual interactions of genetic and environmental factors in the pathogenesis of dissocial personality can be analyzed both using statistical methods for large groups and by analyzing a case study, which is a qualitative study and is underestimated in modern medicine. Due to the complex pathogenesis of dissocial personality, various ethical dilemmas arise, and the extent of the guilt for the committed, prohibited act depends on genetic factors and brain structure and to some extent on environmental factors. The apparent ability of people with dissocial personality to look into their own actions leaves doctors always with the question of how sick or bad the person is. In this study, we used the method of qualitative analysis of case studies of two patients treated in a 24-h personality disorder treatment unit of the Department of Neuroses, Personality Disorders and Eating Disorders of the Second Psychiatric Clinic of the Institute of Psychiatry and Neurology in Warsaw.
Collapse
Affiliation(s)
- Kasper Sipowicz
- Clinic and Polyclinic of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (K.S.); (T.P.)
| | - Tadeusz Pietras
- Clinic and Polyclinic of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (K.S.); (T.P.)
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Michał Sobstyl
- Neurosurgery Department, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warsaw, Poland;
| | - Anna Mosiołek
- Department of Interdisciplinary Research in the Area of Social Inclusion, The Maria Grzegorzewska University in Warsaw, 02-353 Warsaw, Poland;
| | | | - Jadwiga Mosiołek
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Ewa Stefanik-Markowska
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warsaw, Poland; (E.S.-M.); (M.R.); (K.K.)
| | - Michał Ring
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warsaw, Poland; (E.S.-M.); (M.R.); (K.K.)
| | - Krystian Kamecki
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warsaw, Poland; (E.S.-M.); (M.R.); (K.K.)
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
4
|
Pujol J, Blanco-Hinojo L, Persavento C, Martínez-Vilavella G, Falcón C, Gascón M, Rivas I, Vilanova M, Deus J, Gispert JD, Gómez-Roig MD, Llurba E, Dadvand P, Sunyer J. Functional structure of local connections and differentiation of cerebral cortex areas in the neonate. Neuroimage 2024; 298:120780. [PMID: 39122060 PMCID: PMC11399311 DOI: 10.1016/j.neuroimage.2024.120780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Neuroimaging research on functional connectivity can provide valuable information on the developmental differentiation of the infant cerebral cortex into its functional areas. We examined healthy neonates to comprehensively map brain functional connectivity using a combination of local measures that uniquely capture the rich spatial structure of cerebral cortex functional connections. Optimal functional MRI scans were obtained in 61 neonates. Local functional connectivity maps were based on Iso-Distance Average Correlation (IDAC) measures. Single distance maps and maps combining three distinct IDAC measures were used to assess different levels of cortical area functional differentiation. A set of brain areas showed higher connectivity than the rest of the brain parenchyma in each local distance map. These areas were consistent with those supporting basic aspects of the neonatal repertoire of adaptive behaviors and included the sensorimotor, auditory and visual cortices, the frontal operculum/anterior insula (relevant for sucking, swallowing and the sense of taste), paracentral lobule (processing anal and urethral sphincter activity), default mode network (relevant for self-awareness), and limbic-emotional structures such as the anterior cingulate cortex, amygdala and hippocampus. However, the results also indicate that brain areas presumed to be actively developing may not necessarily be mature. In fact, combined distance, second-level maps confirmed that the functional differentiation of the cerebral cortex into functional areas in neonates is far from complete. Our results provide a more comprehensive understanding of the developing brain systems, while also highlighting the substantial developmental journey that the neonatal brain must undergo to reach adulthood.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain.
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain; ISGlobal, Barcelona, Spain
| | - Cecilia Persavento
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mireia Gascón
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Vilanova
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Maria Dolors Gómez-Roig
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/1&3, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Llurba
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/1&3, Instituto de Salud Carlos III, Madrid, Spain; Department of Obstetrics and Gynaecology. Institut d'Investigació Biomèdica Sant Pau - IIB Sant Pau. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
5
|
Wang YM, Zhang YY, Wang Y, Cao Q, Zhang M. Task-related brain activation associated with violence in patients with schizophrenia: A meta-analysis. Asian J Psychiatr 2024; 97:104080. [PMID: 38788320 DOI: 10.1016/j.ajp.2024.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
This study investigates specific changes in brain function during cognitive and emotional tasks in patients with schizophrenia and a history of violence (VSCZ) compared with non-violent patients with schizophrenia and healthy controls. A comprehensive literature search was conducted at the Web of Science, Medline, and PubMed. Ten studies met the inclusion criteria. In which, eight studies compared brain activation between patients with VSCZ and non-violent patients with schizophrenia, and the former exhibited increased activation at the middle occipital gyrus and rectus compared with the latter. Seven studies compared brain activation between patients with VSCZ and controls, and the former exhibited increased activation at the anterior cingulate cortex, cerebellum VI region, lingual gyrus and fusiform. Subgroup analysis in five studies performing emotional tasks revealed that patients with VSCZ showed increased activation at the middle occipital gyrus compared with non-violent patients with schizophrenia. Our findings suggest that abnormal emotion perception and regulation significantly contribute to the increased risk of violence in patients with schizophrenia. Notably, the middle occipital gyrus and rectus emerge as key neurophysiological correlates associated with this phenomenon.
Collapse
Affiliation(s)
- Yong-Ming Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Yi-Yang Zhang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ying Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Qun Cao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meng Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| |
Collapse
|
6
|
Armstrong TA, Boisvert DL, Wells J, Lewis RH, Cooke EM, Woeckener M, Kavish N, Harper JM. Testosterone, cortisol, and psychopathy: Further evidence with the Levenson self-report psychopathy scale and the inventory of callous unemotional traits. Soc Neurosci 2024; 19:168-180. [PMID: 39172261 DOI: 10.1080/17470919.2024.2390849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The current study explored associations between testosterone, cortisol, and both the Levenson Self-Report Psychopathy Scale (LSRPS) and the Inventory of Callous Unemotional (ICU) traits. Data were gathered from a relatively large sample of university students (n = 522) and analyses considered direct and interactive associations between hormones and psychopathic traits, as well as interactions between these associations and the time of day at which samples were gathered and the sex of participants. Baseline cortisol had a negative association with LSRPS primary psychopathy scores. In addition, baseline cortisol interacted with the time of day in association with LSRPS total scores. Simple slopes analyses indicated cortisol had a negative association with LSRPS total scores in the morning but not the afternoon. Interactions among hormone measures were not statistically significant. There was also no evidence for the moderation of associations between hormones and psychopathic traits by sex.
Collapse
Affiliation(s)
- Todd A Armstrong
- School of Criminology and Criminal Justice, University of Nebraska-Omaha, Omaha, NE, USA
| | - Danielle L Boisvert
- Department of Criminal Justice and Criminology, Sam Houston State University, Huntsville, TX, USA
| | - Jessica Wells
- Department of Criminal Justice, Boise State University, Boise, ID, USA
| | - Richard H Lewis
- Department of Criminal Justice, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Eric M Cooke
- Criminal Justice Program, Bowling Green State University, Bowling Green, OH, USA
| | - Matthias Woeckener
- Department of Criminal Justice, University of Nebraska at Kearney, Kearney, NE, USA
| | - Nicholas Kavish
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - James M Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
7
|
Lamsma J, Raine A, Kia SM, Cahn W, Arold D, Banaj N, Barone A, Brosch K, Brouwer R, Brunetti A, Calhoun VD, Chew QH, Choi S, Chung YC, Ciccarelli M, Cobia D, Cocozza S, Dannlowski U, Dazzan P, de Bartolomeis A, Di Forti M, Dumais A, Edmond JT, Ehrlich S, Evermann U, Flinkenflügel K, Georgiadis F, Glahn DC, Goltermann J, Green MJ, Grotegerd D, Guerrero-Pedraza A, Ha M, Hong EL, Hulshoff Pol H, Iasevoli F, Kaiser S, Kaleda V, Karuk A, Kim M, Kircher T, Kirschner M, Kochunov P, Kwon JS, Lebedeva I, Lencer R, Marques TR, Meinert S, Murray R, Nenadić I, Nguyen D, Pearlson G, Piras F, Pomarol-Clotet E, Pontillo G, Potvin S, Preda A, Quidé Y, Rodrigue A, Rootes-Murdy K, Salvador R, Skoch A, Sim K, Spalletta G, Spaniel F, Stein F, Thomas-Odenthal F, Tikàsz A, Tomecek D, Tomyshev A, Tranfa M, Tsogt U, Turner JA, van Erp TGM, van Haren NEM, van Os J, Vecchio D, Wang L, Wroblewski A, Nickl-Jockschat T. Structural brain abnormalities and aggressive behaviour in schizophrenia: Mega-analysis of data from 2095 patients and 2861 healthy controls via the ENIGMA consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.04.24302268. [PMID: 38370846 PMCID: PMC10871467 DOI: 10.1101/2024.02.04.24302268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Schizophrenia is associated with an increased risk of aggressive behaviour, which may partly be explained by illness-related changes in brain structure. However, previous studies have been limited by group-level analyses, small and selective samples of inpatients and long time lags between exposure and outcome. Methods This cross-sectional study pooled data from 20 sites participating in the international ENIGMA-Schizophrenia Working Group. Sites acquired T1-weighted and diffusion-weighted magnetic resonance imaging scans in a total of 2095 patients with schizophrenia and 2861 healthy controls. Measures of grey matter volume and white matter microstructural integrity were extracted from the scans using harmonised protocols. For each measure, normative modelling was used to calculate how much patients deviated (in z-scores) from healthy controls at the individual level. Ordinal regression models were used to estimate the associations of these deviations with concurrent aggressive behaviour (as odds ratios [ORs] with 99% confidence intervals [CIs]). Mediation analyses were performed for positive symptoms (i.e., delusions, hallucinations and disorganised thinking), impulse control and illness insight. Aggression and potential mediators were assessed with the Positive and Negative Syndrome Scale, Scale for the Assessment of Positive Symptoms or Brief Psychiatric Rating Scale. Results Aggressive behaviour was significantly associated with reductions in total cortical volume (OR [99% CI] = 0.88 [0.78, 0.98], p = .003) and global white matter integrity (OR [99% CI] = 0.72 [0.59, 0.88], p = 3.50 × 10-5) and additional reductions in dorsolateral prefrontal cortex volume (OR [99% CI] = 0.85 [0.74, 0.97], p =.002), inferior parietal lobule volume (OR [99% CI] = 0.76 [0.66, 0.87], p = 2.20 × 10-7) and internal capsule integrity (OR [99% CI] = 0.76 [0.63, 0.92], p = 2.90 × 10-4). Except for inferior parietal lobule volume, these associations were largely mediated by increased severity of positive symptoms and reduced impulse control. Conclusions This study provides evidence that the co-occurrence of positive symptoms, poor impulse control and aggressive behaviour in schizophrenia has a neurobiological basis, which may inform the development of therapeutic interventions.
Collapse
Affiliation(s)
- Jelle Lamsma
- Department of Criminology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adrian Raine
- Department of Criminology, University of Pennsylvania, Philadelphia, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Seyed M. Kia
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dominic Arold
- Division of Psychological and Social Medicine and Developmental Neurosciences, TU Dresden, Germany
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Annarita Barone
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, USA
| | - Rachel Brouwer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Qian H. Chew
- Department of Research, Institute of Mental Health, Singapore
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Mariateresa Ciccarelli
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Derin Cobia
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, USA
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paola Dazzan
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Andrea de Bartolomeis
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marta Di Forti
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Alexandre Dumais
- Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
- Institut Philippe-Pinel, Montreal, Canada
| | - Jesse T. Edmond
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Psychology, Georgia State University, Atlanta, USA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, TU Dresden, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, TU Dresden, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Switzerland
| | - David C. Glahn
- Department of Psychiatry, Harvard Medical School, Harvard, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, USA
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Melissa J. Green
- Neuroscience Research Australia, Randwick, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | | | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Elliot L. Hong
- Department of Psychiatry and Behavioral Science, UTHealth Houston, Houston, USA
| | - Hilleke Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | - Felice Iasevoli
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Stefan Kaiser
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Vasily Kaleda
- Department of Youth Psychiatry, Mental Health Research Center, Moscow, Russia
| | - Andriana Karuk
- FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Science, UTHealth Houston, Houston, USA
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russia
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Tiago R. Marques
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Dana Nguyen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, USA
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Stéphane Potvin
- Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, USA
| | - Yann Quidé
- Neuroscience Research Australia, Randwick, Australia
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Amanda Rodrigue
- Department of Psychiatry, Harvard Medical School, Harvard, USA
| | - Kelly Rootes-Murdy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Psychology, Georgia State University, Atlanta, USA
| | - Raymond Salvador
- FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kang Sim
- Department of Research, Institute of Mental Health, Singapore
| | | | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Andràs Tikàsz
- Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
| | - David Tomecek
- National Institute of Mental Health, Klecany, Czech Republic
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russia
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Jeonju, South Korea
| | - Jessica A. Turner
- Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, USA
| | - Theo G. M. van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, USA
| | - Neeltje E. M. van Haren
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC Sophia, Rotterdam, the Netherlands
| | - Jim van Os
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, USA
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa, Iowa City, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| |
Collapse
|
8
|
Wang YM, Wang Y, Cao Q, Zhang M. Aberrant brain structure in patients with schizophrenia and violence: A meta-analysis. J Psychiatr Res 2023; 164:447-453. [PMID: 37433247 DOI: 10.1016/j.jpsychires.2023.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/16/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
Previous studies have indicated that schizophrenia is associated with an increased risk of violence, which may constitute a public health concern, leading to poor treatment outcomes and stigmatization of patients. Investigating brain structural features of violence in schizophrenia could help us understand its specific pathogenesis and find effective biomarkers. Our study aimed at identifying reliable brain structural changes associated with violence in patients with schizophrenia by conducting a meta-analysis and meta-regression of magnetic resonance imaging studies. Specific brain changes in patients with schizophrenia and violence (VSZ) were studied, compared with patients with schizophrenia and violence (VSZ), patients with non-violent schizophrenia (NVSZ), and individuals with a history of violence only and health controls. Primary outcomes revealed that there was no significant difference of gray matter volume between patients with VSZ and patient with NVSZ. Compared with controls, patients with VSZ exhibited decreased gray matter volume in the insula, the superior temporal gyrus (STG), the left inferior frontal gyrus, the left parahippocampus, and the right putamen. Compared with individuals with a history of violence only, patients with VSZ exhibited decreased volume in the right insula and the right STG. Meta-regression analysis revealed a negative correlation between the duration of schizophrenia and the volume of the right insula in patients with VSZ. These findings may suggest a shared neurobiological basis for both violence and psychiatric symptoms. The impaired frontotemporal-limbic network may serve as a neurobiological basis for higher prevalence of violent behaviour in patients with schizophrenia. However, it is important to note that these changes are not unique to patients with VSZ. Further investigation is needed to explore the neural mechanism that drive the interaction between violent behaviour and specific aggression-related dimensions of schizophrenia.
Collapse
Affiliation(s)
- Yong-Ming Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Ying Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Qun Cao
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Meng Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China.
| |
Collapse
|
9
|
Bell C, Tesli N, Gurholt TP, Rokicki J, Hjell G, Fischer-Vieler T, Melle I, Agartz I, Andreassen OA, Ringen PA, Rasmussen K, Dahl H, Friestad C, Haukvik UK. Psychopathy subdomains in violent offenders with and without a psychotic disorder. Nord J Psychiatry 2022; 77:393-402. [PMID: 36260740 DOI: 10.1080/08039488.2022.2128869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Violence in psychosis has been linked to antisocial behavior and psychopathy traits. Psychopathy comprises aspects of interpersonal, affective, lifestyle, and antisocial traits which may be differently involved in violent offending by persons with psychotic disorders. We explored psychopathy subdomains among violent offenders with and without a psychotic disorder. METHODS 46 males, with a history of severe violence, with (n = 26; age 35.85 ± 10.34 years) or without (n = 20; age 39.10 ± 11.63 years) a diagnosis of a psychotic disorder, were assessed with the Psychopathy Checklist-Revised (PCL-R). PCL-R was split into subdomains following the four-facet model. Group differences in total and subdomain scores were analyzed with a general linear model with covariates. RESULTS Total PCL-R scores did not differ between the groups (p = 0.61, Cohen's d = 0.17). The violent offenders without psychotic disorders had higher facet 2 scores than the patient group with psychotic disorders (p = 0.029, Cohen's d = 0.77). Facet 1, 3, or 4 scores did not differ between the groups. Controlling for age did not alter the results. CONCLUSION Patients with a psychotic disorder and a history of severe violence have lower affective psychopathy scores than violent offenders without psychotic disorders. This observation may point toward distinct underlying mechanisms for violence and may provide a target for focused treatment and prevention.
Collapse
Affiliation(s)
- Christina Bell
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Natalia Tesli
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Gabriela Hjell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatry, Østfold Hospital Trust, Graalum, Norway
| | - Thomas Fischer-Vieler
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Vestre Viken Hospital Trust, Division of Mental health and Addiction, Drammen Hospital, Drammen, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.,Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Petter Andreas Ringen
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kirsten Rasmussen
- St.Olavs Hospital, Centre for Research and Education in Forensic Psychiatry, Trondheim, Norway.,Department of Psychology and Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hilde Dahl
- St.Olavs Hospital, Centre for Research and Education in Forensic Psychiatry, Trondheim, Norway.,Department of Psychology and Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Christine Friestad
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway.,University College of Norwegian Correctional Service, Oslo, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Teeuw J, Klein M, Mota NR, Brouwer RM, van ‘t Ent D, Al-Hassaan Z, Franke B, Boomsma DI, Hulshoff Pol HE. Multivariate Genetic Structure of Externalizing Behavior and Structural Brain Development in a Longitudinal Adolescent Twin Sample. Int J Mol Sci 2022; 23:ijms23063176. [PMID: 35328598 PMCID: PMC8949114 DOI: 10.3390/ijms23063176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Externalizing behavior in its more extreme form is often considered a problem to the individual, their families, teachers, and society as a whole. Several brain structures have been linked to externalizing behavior and such associations may arise if the (co)development of externalizing behavior and brain structures share the same genetic and/or environmental factor(s). We assessed externalizing behavior with the Child Behavior Checklist and Youth Self Report, and the brain volumes and white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]) with magnetic resonance imaging in the BrainSCALE cohort, which consisted of twins and their older siblings from 112 families measured longitudinally at ages 10, 13, and 18 years for the twins. Genetic covariance modeling based on the classical twin design, extended to also include siblings of twins, showed that genes influence externalizing behavior and changes therein (h2 up to 88%). More pronounced externalizing behavior was associated with higher FA (observed correlation rph up to +0.20) and lower MD (rph up to −0.20), with sizeable genetic correlations (FA ra up to +0.42; MD ra up to −0.33). The cortical gray matter (CGM; rph up to −0.20) and cerebral white matter (CWM; rph up to +0.20) volume were phenotypically but not genetically associated with externalizing behavior. These results suggest a potential mediating role for global brain structures in the display of externalizing behavior during adolescence that are both partially explained by the influence of the same genetic factor.
Collapse
Affiliation(s)
- Jalmar Teeuw
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Correspondence: ; Tel.: +31-(088)-75-53-387
| | - Marieke Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Rachel M. Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dennis van ‘t Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
| | - Zyneb Al-Hassaan
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
- Amsterdam Public Health (APH) Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
11
|
Bell C, Tesli N, Gurholt TP, Rokicki J, Hjell G, Fischer-Vieler T, Melle I, Agartz I, Andreassen OA, Rasmussen K, Johansen R, Friestad C, Haukvik UK. Associations between amygdala nuclei volumes, psychosis, psychopathy, and violent offending. Psychiatry Res Neuroimaging 2022; 319:111416. [PMID: 34847406 DOI: 10.1016/j.pscychresns.2021.111416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/30/2021] [Accepted: 11/07/2021] [Indexed: 12/13/2022]
Abstract
The amygdala is involved in fear perception and aggression regulation, and smaller volumes have been associated with psychotic and non-psychotic violence. We explored the relationship between amygdala nuclei volumes in violent offenders with and without psychosis, and the association to psychopathy traits. 3T MRI scans (n = 204, males, 18-66 years) were obtained from psychotic violent offenders (PSY-V, n = 29), non-psychotic violent offenders (NPV, n = 19), non-violent psychosis patients (PSY-NV, n = 67), and healthy controls (HC, n = 89). Total amygdala and 9 amygdala nuclei volumes were obtained with FreeSurfer. Psychopathy traits were measured with the Psychopathy Checklist-revised (PCL-R). Multivariate analyses explored diagnostic differences in amygdala nuclei volumes and associations to psychosis, violence, and psychopathy traits. PSY-V had a smaller basal nucleus, anterior amygdaloid area, and cortical amygdalar transition area (CATA), whereas PSY-NV had a smaller CATA than HC. Volumes in NPV did not differ from HC, and there were no associations between PCL-R total or factor scores and any of the nuclei or whole amygdala volumes. The lower volumes of amygdala nuclei involved in fear modulation, stress responses, and social interpretation may point towards some mechanisms of relevance to violence in psychosis, but the results warrant replication in larger subject samples.
Collapse
Affiliation(s)
- Christina Bell
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Natalia Tesli
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Østfold Hospital Trust, Graalum, Norway
| | - Thomas Fischer-Vieler
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kirsten Rasmussen
- St.Olavs Hospital, Forensic Research Unit, Brøset, Norway; Norwegian University of Science and Technology (NTNU), Department of Psychology, and Department of Mental Health, Norway
| | - Ragnhild Johansen
- St.Olavs Hospital, Forensic Research Unit, Brøset, Norway; Norwegian University of Science and Technology (NTNU), Department of Psychology, and Department of Mental Health, Norway
| | - Christine Friestad
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Norway; University College of Norwegian Correctional Service, Oslo, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Norway
| |
Collapse
|
12
|
Gou N, Lu J, Zhang S, Liang X, Guo H, Sun Q, Zhou J, Wang X. Structural Deficits in the Frontotemporal Network Associated With Psychopathic Traits in Violent Offenders With Schizophrenia. Front Psychiatry 2022; 13:846838. [PMID: 35492688 PMCID: PMC9039223 DOI: 10.3389/fpsyt.2022.846838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
People with schizophrenia (SZ) are at increased risk of violence compared to the general population. However, the neural mechanisms of violent behavior in patients with SZ are still unclear due to the heterogeneity of the diseased population. In this study, we aimed to examine the neural correlates of violent behavior in SZ and to determine whether the structural deficits were related to psychopathic traits. A total of 113 participants, including 31 SZ patients with violent behavior (vSZ), 39 SZ patients without violent behavior (nvSZ), and 43 healthy controls (HC), completed the T1-weighted magnetic resonance imaging (MRI) scan and were analyzed using voxel-based morphometry approach. The psychopathic traits were assessed using the Psychopathy Checklist: Screening Version (PCL:SV). The results showed decreased gray matter volume (GMV) in the vSZ group in the right temporal lobe and bilateral inferior frontal gyri compared to HCs; while reduced GMV in the inferior parietal lobe, parahippocampal and orbital frontal gyri was found in the nvSZ group compared with HCs. Correlation analyses showed that psychopathic traits were negatively associated with the GMV in the right superior temporal and left fusiform gyri in the vSZ group, indicating that psychopathic traits, as reflected by the score of antisocial factor, might be related to structural deficits in the temporal lobe, which led to a propensity to violent behavior in patients with SZ. Our findings suggest that violent behavior in patients with SZ might have a personality background associated with the frontotemporal network aberrance. In future studies, we need to take a closer look at psychopathic traits for better understanding of the mechanism of interpersonal violence in patients with SZ and to explore whether the imaging findings from this study can serve as a biomarker to predict future violent behaviors and community living.
Collapse
Affiliation(s)
- Ningzhi Gou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juntao Lu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Simei Zhang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Xiaoxi Liang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huijuan Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiaoling Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Pujol J, Blanco-Hinojo L, Ortiz H, Gallart L, Moltó L, Martínez-Vilavella G, Vilà E, Pacreu S, Adalid I, Deus J, Pérez-Sola V, Fernández-Candil J. Mapping the neural systems driving breathing at the transition to unconsciousness. Neuroimage 2021; 246:118779. [PMID: 34875384 DOI: 10.1016/j.neuroimage.2021.118779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
After falling asleep, the brain needs to detach from waking activity and reorganize into a functionally distinct state. A functional MRI (fMRI) study has recently revealed that the transition to unconsciousness induced by propofol involves a global decline of brain activity followed by a transient reduction in cortico-subcortical coupling. We have analyzed the relationships between transitional brain activity and breathing changes as one example of a vital function that needs the brain to readapt. Thirty healthy participants were originally examined. The analysis involved the correlation between breathing and fMRI signal upon loss of consciousness. We proposed that a decrease in ventilation would be coupled to the initial decline in fMRI signal in brain areas relevant for modulating breathing in the awake state, and that the subsequent recovery would be coupled to fMRI signal in structures relevant for controlling breathing during the unconscious state. Results showed that a slight reduction in breathing from wakefulness to unconsciousness was distinctively associated with decreased activity in brain systems underlying different aspects of consciousness including the prefrontal cortex, the default mode network and somatosensory areas. Breathing recovery was distinctively coupled to activity in deep brain structures controlling basic behaviors such as the hypothalamus and amygdala. Activity in the brainstem, cerebellum and hippocampus was associated with breathing variations in both states. Therefore, our brain maps illustrate potential drives to breathe, unique to wakefulness, in the form of brain systems underlying cognitive awareness, self-awareness and sensory awareness, and to unconsciousness involving structures controlling instinctive and homeostatic behaviors.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain.
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Héctor Ortiz
- Department of Project and Construction Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Lluís Gallart
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain; Department of Surgery, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luís Moltó
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain
| | - Esther Vilà
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Susana Pacreu
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Irina Adalid
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain; Department of Psychobiology and Methodology in Health Sciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Víctor Pérez-Sola
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain; Hospital del Mar- IMIM and Department of Psychiatry, Institute of Neuropsychiatry and Addictions, Autonomous University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
14
|
Lenzen LM, Donges MR, Eickhoff SB, Poeppl TB. Exploring the neural correlates of (altered) moral cognition in psychopaths. BEHAVIORAL SCIENCES & THE LAW 2021; 39:731-740. [PMID: 34655096 PMCID: PMC8688304 DOI: 10.1002/bsl.2539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/01/2021] [Indexed: 05/29/2023]
Abstract
Research into the neurofunctional mechanisms of psychopathy has gathered momentum over the last years. Previous neuroimaging studies have identified general changes in brain activity of psychopaths. In an exploratory meta-analysis, we here investigated the neural correlates of impaired moral cognition in psychopaths. Our analyses replicated general effects in the dorsomedial prefrontal cortex, lateral prefrontal cortex, fronto-insular cortex, and amygdala, which have been reported recently. In addition, we found aberrant brain activity in the midbrain and inferior parietal cortex. Our preliminary findings suggest that alterations in both regions may represent more specific functional brain changes related to (altered) moral cognition in psychopaths. Furthermore, future studies including a more comprehensive corpus of neuroimaging studies on moral cognition in psychopaths should re-examine this notion.
Collapse
Affiliation(s)
- Laura M. Lenzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Maximilian R. Donges
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Brain and Behaviour, Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Timm B. Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Calzada-Reyes A, Alvarez-Amador A, Galán-Garcia L, Valdés-Sosa M. Electroencephalographic and morphometric abnormalities in psychopath offenders. BEHAVIORAL SCIENCES & THE LAW 2021; 39:597-610. [PMID: 34800344 DOI: 10.1002/bsl.2548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The main goals of the present study were to replicate and extend current knowledge related to paralimbic dysfunctions associated with psychopathy. The research evaluated the quantitative electroencephalography, current density (CD) source and synchronization likelihood analysis during the rest condition and structural magnetic resonance imaging images to compare volumetric and cortical thickness, in inmates recruited from two prisons located in Havana City. The Psychopathy Checklist-Revised (PCL-R) was used as a quantitative measure of psychopathy. This study showed most beta energy and less alpha activity in male psychopath offenders. Low-resolution electromagnetic tomography signified an increase of beta activity in psychopath offender groups within paralimbic regions. The superior temporal gyrus volume was associated with the F1 factor while the fusiform, anterior cingulate and associative occipital areas were primarily associated with the F2 factor of PCL-R scale. Cortical thickness in the left dorsal anterior cingulate cortex and the temporal pole was negatively associated with PCL-R total score.
Collapse
Affiliation(s)
- Ana Calzada-Reyes
- Department of Clinical Neurophysiology, Cuban Center for Neuroscience, Havana, Cuba
| | | | | | - Mitchell Valdés-Sosa
- Department of Cognitive Neurosciences, Cuban Center for Neuroscience, Havana, Cuba
| |
Collapse
|
16
|
Saladino V, Lin H, Zamparelli E, Verrastro V. Neuroscience, Empathy, and Violent Crime in an Incarcerated Population: A Narrative Review. Front Psychol 2021; 12:694212. [PMID: 34393924 PMCID: PMC8355490 DOI: 10.3389/fpsyg.2021.694212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Empathy is a fundamental construct that allows individuals to perceive and understand the cognitive and emotional state of others. Empathy is not only a psychological and sociological concept; it also heavily impacts our daily lives by affecting our decisions and actions. Empathy is connected to and involves specific parts of the brain which, if damaged or of reduced volume, can lead to actions that are morally unjust, aggressive, or simply denoting a lack of understanding and sensitivity. The literature affirms that the low level of empathy, guilt, embarrassment, and moral reasoning displayed by violent and psychopathic criminals is strongly associated with empathy-linked brain regions that are smaller in size or less developed. The aim of this review is to show empirical data over the last 5 years on the connection between empathy and neuroscience among violent and psychopathic offenders, reflecting on future research on the topic.
Collapse
Affiliation(s)
- Valeria Saladino
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Italy
| | - Hannah Lin
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | | | - Valeria Verrastro
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
17
|
Abstract
Psychopathy is a personality disorder characterized by a constellation of affective, interpersonal, lifestyle and antisocial features whose antecedents can be identified in a subgroup of young people showing severe antisocial behaviour. The prevalence of psychopathy in the general population is thought to be ~1%, but is up to 25% in prisoners. The aetiology of psychopathy is complex, with contributions of both genetic and environmental risk factors, and gene-environment interactions and correlations. Psychopathy is characterized by structural and functional brain abnormalities in cortical (such as the prefrontal and insular cortices) and subcortical (for example, the amygdala and striatum) regions leading to neurocognitive disruption in emotional responsiveness, reinforcement-based decision-making and attention. Although no effective treatment exists for adults with psychopathy, preliminary intervention studies targeting key neurocognitive disturbances have shown promising results. Given that psychopathy is often comorbid with other psychiatric disorders and increases the risk of physical health problems, educational and employment failure, accidents and criminality, the identification of children and young people at risk for this personality disorder and preventative work are important. Indeed, interventions that target the antecedents of psychopathic features in children and adolescents have been found to be effective.
Collapse
|
18
|
Pujol J, Blanco-Hinojo L, Macia D, Martínez-Vilavella G, Deus J, Pérez-Sola V, Cardoner N, Soriano-Mas C, Sunyer J. Differences between the child and adult brain in the local functional structure of the cerebral cortex. Neuroimage 2021; 237:118150. [PMID: 33984493 DOI: 10.1016/j.neuroimage.2021.118150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Imaging studies on neuronal network formation provide relevant information as to how the brain matures during adolescence. We used a novel imaging approach combining well-established MRI measures of local functional connectivity that jointly provide qualitatively different information relating to the functional structure of the cerebral cortex. To investigate the adolescent transition into adulthood, we comparatively assessed 169 preadolescents aged 8-12 years and 121 healthy adults. Whole-brain functional connectivity maps were generated using multi-distance measures of intracortical neural activity coupling defined within iso-distant local areas. Such Iso-Distant Average Correlation (IDAC) measures therefore represent the average temporal correlation of a given brain unit, or voxel, with other units situated at increasingly separated iso-distant intervals. The results indicated that between-group differences in the functional structure of the cerebral cortex are extensive and implicate part of the lateral prefrontal cortex, a medial frontal/anterior cingulate region, the superior parietal lobe extending to the somatosensory strip and posterior cingulate cortex, and local connections within the visual cortex, hippocampus, amygdala and insula. We thus provided detail of the cerebral cortex functional structure maturation during the transition to adulthood, which may serve to establish more accurate links between adolescent performance gains and cerebral cortex maturation. Remarkably, our study provides new information as to the cortical maturation processes in prefrontal areas relevant to executive functioning and rational learning, medial frontal areas playing an active role in the cognitive appraisal of emotion and anxiety, and superior parietal cortices strongly associated with bodily self-consciousness in the context of body image formation.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain.
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Didac Macia
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain
| | - Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - Víctor Pérez-Sola
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Hospital del Mar-IMIM, Spain; Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - Narcís Cardoner
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Mental Health Department, Parc Taulí Sabadell University Hospital, Spain; Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Spain
| | - Carles Soriano-Mas
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Spain; Department of Psychobiology and Methodology in Health Sciences, Autonomous University of Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
19
|
Jalava J, Griffiths S, Larsen RR, Alcott BE. Is the Psychopathic Brain an Artifact of Coding Bias? A Systematic Review. Front Psychol 2021; 12:654336. [PMID: 33912115 PMCID: PMC8071952 DOI: 10.3389/fpsyg.2021.654336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 11/28/2022] Open
Abstract
Questionable research practices are a well-recognized problem in psychology. Coding bias, or the tendency of review studies to disproportionately cite positive findings from original research, has received comparatively little attention. Coding bias is more likely to occur when original research, such as neuroimaging, includes large numbers of effects, and is most concerning in applied contexts. We evaluated coding bias in reviews of structural magnetic resonance imaging (sMRI) studies of PCL-R psychopathy. We used PRISMA guidelines to locate all relevant original sMRI studies and reviews. The proportion of null-findings cited in reviews was significantly lower than those reported in original research, indicating coding bias. Coding bias was not affected by publication date or review design. Reviews recommending forensic applications—such as treatment amenability or reduced criminal responsibility—were no more accurate than purely theoretical reviews. Coding bias may have contributed to a perception that structural brain abnormalities in psychopaths are more consistent than they actually are, and by extension that sMRI findings are suitable for forensic application. We discuss possible sources for the pervasive coding bias we observed, and we provide recommendations to counteract this bias in review studies. Until coding bias is addressed, we argue that this literature should not inform conclusions about psychopaths' neurobiology, especially in forensic contexts.
Collapse
Affiliation(s)
- Jarkko Jalava
- Department of Interdisciplinary Studies, Okanagan College, Penticton, BC, Canada
| | - Stephanie Griffiths
- Department of Psychology, Okanagan College, Penticton, BC, Canada.,Werklund School of Education, University of Calgary, Calgary, AB, Canada
| | - Rasmus Rosenberg Larsen
- Forensic Science Program and Department of Philosophy, University of Toronto Mississauga, Mississauga, ON, Canada
| | - B Emma Alcott
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
20
|
Pujol J, Blanco-Hinojo L, Gallart L, Moltó L, Martínez-Vilavella G, Vilà E, Pacreu S, Adalid I, Deus J, Pérez-Sola V, Fernández-Candil J. Largest scale dissociation of brain activity at propofol-induced loss of consciousness. Sleep 2021; 44:5894260. [PMID: 32813022 DOI: 10.1093/sleep/zsaa152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Indexed: 11/14/2022] Open
Abstract
The brain is a functional unit made up of multilevel connected elements showing a pattern of synchronized activity that varies in different states. The wake-sleep cycle is a major variation of brain functional condition that is ultimately regulated by subcortical arousal- and sleep-promoting cell groups. We analyzed the evolution of functional MRI (fMRI) signal in the whole cortex and in a deep region including most sleep- and wake-regulating subcortical nuclei at loss of consciousness induced by the hypnotic agent propofol. Optimal data were obtained in 21 of the 30 healthy participants examined. A dynamic analysis of fMRI time courses on a time-scale of seconds was conducted to characterize consciousness transition, and functional connectivity maps were generated to detail the anatomy of structures showing different dynamics. Inside the magnet, loss of consciousness was marked by the participants ceasing to move their hands. We observed activity synchronization after loss of consciousness within both the cerebral cortex and subcortical structures. However, the evolution of fMRI signal was dissociated, showing a transient reduction of global cortico-subcortical coupling that was restored during the unconscious state. An exception to cortico-subcortical decoupling was a brain network related to self-awareness (i.e. the default mode network) that remained connected to subcortical brain structures. Propofol-induced unconsciousness is thus characterized by an initial, transitory dissociated synchronization at the largest scale of brain activity. Such cortico-subcortical decoupling and subsequent recoupling may allow the brain to detach from waking activity and reorganize into a functionally distinct state.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Lluís Gallart
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain.,Department of Surgery, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luís Moltó
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | | | - Esther Vilà
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Susana Pacreu
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Irina Adalid
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.,Department of Psychobiology and Methodology in Health Sciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Víctor Pérez-Sola
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain.,Institute of Neuropsychiatry and Addictions, Hospital del Mar-IMIM and Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
21
|
Hofhansel L, Weidler C, Votinov M, Clemens B, Raine A, Habel U. Morphology of the criminal brain: gray matter reductions are linked to antisocial behavior in offenders. Brain Struct Funct 2020; 225:2017-2028. [PMID: 32591929 PMCID: PMC7473962 DOI: 10.1007/s00429-020-02106-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
Aggression and psychopathy are multifaceted conditions determined interpersonal and antisocial factors. Only a few studies analyze the link between these separate factors and specific brain morphology distinctively. A voxel-based morphometry (VBM) analysis was performed on 27 violent offenders and 27 controls aiming to associate sub-features of aggressive and psychopathic behavior with specific gray matter volumes. Trait aggression was assessed using two self-report tests (Aggression Questionnaire, AQ, and Reactive-Proactive-Aggression Questionnaire, RPQ) and psychopathy with the Psychopathy Checklist-Revised (PCL-R). Total and sub-scale scores of these tests were correlated to the brain morphometry of the offenders group in separate analyses. It was found that psychopathic behavior was negatively correlated with prefrontal gray matter volume and that this result was primarily driven by the antisocial behavior sub-scale of the PCL-R. Furthermore, less gray matter in right superior frontal and left inferior parietal regions with increasing antisocial behavior could be observed. One cluster comprising the right middle and superior temporal gyrus was negatively correlated with both, reactive aggression and antisocial behavior. These results outline (1) the importance of distinctively analyzing sub-features that contribute to aggressive and psychopathic behavior, given that the negative correlation of psychopathy global scores with prefrontal volume was driven by one single facet of the PCL-R scale (antisocial behavior). Moreover, these results indicate (2) fronto-temporo-parietal network deficits in antisocial, criminal offenders, with a particular strong effect in the temporal lobe.
Collapse
Affiliation(s)
- Lena Hofhansel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-10), Research Center Jülich, Jülich, Germany.
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-10), Research Center Jülich, Jülich, Germany
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
22
|
Guirado R, Perez-Rando M, Ferragud A, Gutierrez-Castellanos N, Umemori J, Carceller H, Nacher J, Castillo-Gómez E. A Critical Period for Prefrontal Network Configurations Underlying Psychiatric Disorders and Addiction. Front Behav Neurosci 2020; 14:51. [PMID: 32317945 PMCID: PMC7155216 DOI: 10.3389/fnbeh.2020.00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
The medial prefrontal cortex (mPFC) has been classically defined as the brain region responsible for higher cognitive functions, including the decision-making process. Ample information has been gathered during the last 40 years in an attempt to understand how it works. We now know extensively about the connectivity of this region and its relationship with neuromodulatory ascending projection areas, such as the dorsal raphe nucleus (DRN) or the ventral tegmental area (VTA). Both areas are well-known regulators of the reward-based decision-making process and hence likely to be involved in processes like evidence integration, impulsivity or addiction biology, but also in helping us to predict the valence of our future actions: i.e., what is “good” and what is “bad.” Here we propose a hypothesis of a critical period, during which the inputs of the mPFC compete for target innervation, establishing specific prefrontal network configurations in the adult brain. We discuss how these different prefrontal configurations are linked to brain diseases such as addiction or neuropsychiatric disorders, and especially how drug abuse and other events during early life stages might lead to the formation of more vulnerable prefrontal network configurations. Finally, we show different promising pharmacological approaches that, when combined with the appropriate stimuli, will be able to re-establish these functional prefrontocortical configurations during adulthood.
Collapse
Affiliation(s)
- Ramon Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Valencia, Spain.,Neuroscience Center, University of Helsinki, Helsinki, Finland.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Marta Perez-Rando
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Antonio Ferragud
- Department of Psychology, Cambridge University, Cambridge, United Kingdom
| | | | - Juzoh Umemori
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Hector Carceller
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Valencia, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| |
Collapse
|
23
|
Haselager P, Mecacci G. Superethics Instead of Superintelligence: Know Thyself, and Apply Science Accordingly. AJOB Neurosci 2020; 11:113-119. [PMID: 32228384 DOI: 10.1080/21507740.2020.1740353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The human species is combining an increased understanding of our cognitive machinery with the development of a technology that can profoundly influence our lives and our ways of living together. Our sciences enable us to see our strengths and weaknesses, and build technology accordingly. What would future historians think of our current attempts to build increasingly smart systems, the purposes for which we employ them, the almost unstoppable goldrush toward ever more commercially relevant implementations, and the risk of superintelligence? We need a more profound reflection on what our science shows us about ourselves, what our technology allows us to do with that, and what, apparently, we aim to do with those insights and applications. As the smartest species on the planet, we don't need more intelligence. Since we appear to possess an underdeveloped capacity to act ethically and empathically, we rather require the kind of technology that enables us to act more consistently upon ethical principles. The problem is not to formulate ethical rules, it's to put them into practice. Cognitive neuroscience and AI provide the knowledge and the tools to develop the moral crutches we so clearly require. Why aren't we building them? We don't need superintelligence, we need superethics.
Collapse
|
24
|
Edwards BG, Carre JR, Kiehl KA. A review of psychopathy and Cluster B personality traits and their neural correlates in female offenders. Biol Psychol 2019; 148:107740. [PMID: 31415792 DOI: 10.1016/j.biopsycho.2019.107740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 01/24/2023]
Abstract
Although men commit more crime and are incarcerated at higher rates than women, women represent the fastest growing segment of the justice system. Empirical work suggests that psychopathy and Cluster B disorders are implicated in antisocial behavior across gender, and that neurobiological correlates of personality may inform such behavior. This review utilizes a gendered perspective to discuss psychopathy and Cluster B disorders in relation to antisocial behavior and incorporates work on neural correlates of personality disorders. Co-morbidity across these conditions may be partly explained by similar frontal deficits, reflective of disinhibition. Affective processing abnormalities appear to be characterized by distinct deficits in limbic/paralimbic regions, reflecting differential etiological underpinnings and behavioral outcomes. This review underscores the utility in examining personality pathology together with neurobiological and environmental factors. Methodological issues and clinical implications are also discussed.
Collapse
Affiliation(s)
- Bethany G Edwards
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, United States; University of New Mexico, Albuquerque, New Mexico, United States.
| | - Jessica R Carre
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, United States
| | - Kent A Kiehl
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, United States; University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
25
|
Johanson M, Vaurio O, Tiihonen J, Lähteenvuo M. A Systematic Literature Review of Neuroimaging of Psychopathic Traits. Front Psychiatry 2019; 10:1027. [PMID: 32116828 PMCID: PMC7016047 DOI: 10.3389/fpsyt.2019.01027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Core psychopathy is characterized by grandiosity, callousness, manipulativeness, and lack of remorse, empathy, and guilt. It is often comorbid with conduct disorder and antisocial personality disorder (ASPD). Psychopathy is present in forensic as well as prison and general populations. In recent years, an increasing amount of neuroimaging studies has been conducted in order to elucidate the obscure neurobiological etiology of psychopathy. The studies have yielded heterogenous results, and no consensus has been reached. AIMS This study systematically reviewed and qualitatively summarized functional and structural neuroimaging studies conducted on individuals with psychopathic traits. Furthermore, this study aimed to evaluate whether the findings from different MRI modalities could be reconciled from a neuroanatomical perspective. MATERIALS AND METHODS After the search and auditing processes, 118 neuroimaging studies were included in this systematic literature review. The studies consisted of structural, functional, and diffusion tensor MRI studies. RESULTS Psychopathy was associated with numerous neuroanatomical abnormalities. Structurally, gray matter anomalies were seen in frontotemporal, cerebellar, limbic, and paralimbic regions. Associated gray matter volume (GMV) reductions were most pronounced particularly in most of the prefrontal cortex, and temporal gyri including the fusiform gyrus. Also decreased GMV of the amygdalae and hippocampi as well the cingulate and insular cortices were associated with psychopathy, as well as abnormal morphology of the hippocampi, amygdala, and nucleus accumbens. Functionally, psychopathy was associated with dysfunction of the default mode network, which was also linked to poor moral judgment as well as deficient metacognitive and introspective abilities. Second, reduced white matter integrity in the uncinate fasciculus and dorsal cingulum were associated with core psychopathy. Third, emotional detachment was associated with dysfunction of the posterior cerebellum, the human mirror neuron system and the Theory of Mind denoting lack of empathy and persistent failure in integrating affective information into cognition. CONCLUSIONS Structural and functional aberrancies involving the limbic and paralimbic systems including reduced integrity of the uncinate fasciculus appear to be associated with core psychopathic features. Furthermore, this review points towards the idea that ASPD and psychopathy might stem from divergent biological processes.
Collapse
Affiliation(s)
- Mika Johanson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Olli Vaurio
- Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland.,Department of Forensic Psychiatry, University of Eastern Finland, Kuopio, Finland
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland.,Department of Forensic Psychiatry, University of Eastern Finland, Kuopio, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland
| |
Collapse
|