1
|
Luo S, Lai S, Chu L, Wang Y, Chen P, Ye X, Zhuo J, Abula M, Liang Y, Wei D, Zhang M, Yin J, Lu X, Zhang J, Zhang Y, Zhong S, Jia Y. The abnormal choline to creatine ratio of the right anterior cingulate gyrus is linked to cognitive impairment in youth with major depressive disorder. J Affect Disord 2025; 381:543-550. [PMID: 40157512 DOI: 10.1016/j.jad.2025.03.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Previous studies indicated that the notion that 20-40 % of patients with major depressive disorder (MDD) have cognitive impairments (CI). The mechanism of cognitive deficits in MDD is largely unknown. Recent evidence suggests that metabolic changes may be associated with poorer cognitive outcomes in MDD. METHOD We recruited 105 right-handed, untreated youth with MDD patients, and 68 demographically matched healthy controls (HCs), and underwent the MATRICS Consensus Cognitive Battery (MCCB) assessment and proton magnetic resonance spectroscopy (1H-MRS) scan in the anterior cingulate gyrus (ACC) and putamen. Differential and association analysis was performed to investigate the relationship between cognitive performance and neurometabolism ratios of ACC and putamen in MDD groups. RESULTS Thirty-nine patients defined as CI group (>1.5 SD below the normal mean of MCCB in two or more MCCB domains) and 67 patients for NCI (without CI) group. The CI group exhibited significantly higher Cho/Cr ratios in the right ACC when compared to the NCI group and HCs groups. Both CI and NCI groups showed significantly higher Cho/Cr ratios in the left putamen compared to the HCs. Meanwhile, the number of episodes were positively correlated with the Cho/Cr ratios in the left putamen (r = 0.35, p = 0.035) in CI group. CONCLUSION Our findings suggest that both CI and NCI MDD may experience putamen dysfunction. Additionally, the frequency of depressive episodes appears to have a cumulative effect on alterations in the Cho/Cr ratios in the putamen. Concurrently, an increased Cho/Cr ratio in the ACC is linked to widespread cognitive deficits in MDD patients. These results may point to a subgroup of patients who could benefit from interventions aimed at modulating brain functional status.
Collapse
Affiliation(s)
- Shijie Luo
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Linna Chu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaojie Ye
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jinping Zhuo
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Munila Abula
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yikun Liang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Dongxue Wei
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Meiqi Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jie Yin
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Liu T, Zhang L, Hu Y, Zhao C, Qiao J. Specific alterations of anterior cingulate cortex subregions in somatic depression: A resting-state fMRI study. Clin Neurophysiol 2025; 173:205-212. [PMID: 40174241 DOI: 10.1016/j.clinph.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 12/22/2024] [Accepted: 03/16/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE To investigate the changes in resting-state functional connectivity (rs-FC) of different anterior cingulate cortex (ACC) subregions in patients with somatic depression (SD), and its correlation with clinical characteristics. METHODS We recruited 38 patients with SD, 33 patients with non-somatic depression (NSD), and 30 healthy controls (HC).All subjects underwent resting-state functional magnetic resonance imaging(rs-fMRI).The ACC subregions (pregenual ACC(pgACC), subgenual ACC(sgACC), and supracallosal ACC(supACC)) were used as regions of interest to make functional connections with the whole brain.Using correlation analysis to explore the relationship between rs-FC values and the severity of clinical symptoms. RESULTS SD group showed decreased rs-FC between the right pgACC and the left superior temporal gyrus (STG)/ left middle temporal gyrus (MTG) (MNI: x = -45, y = -12, z = -9, t = 4.36/MNI: x = -48, y = -33, z = -3, t = 3.89, AlphaSim correction, voxel-level P < 0.001, cluster-level P < 0.05), and rs-FC was negatively correlated with Somatic subscale (SS) (r = -0.572, P < 0.0001). But there was no significant correlation with Depression Subscale (DS) (P > 0.05). CONCLUSIONS The group of SD exhibit functional alterations in the right pgACC and left STG/left MTG, which may be the neuroimaging basis for the occurrence of SD. SIGNIFICANCE The functional abnormality between the ACC subregions and temporal lobe show a new neural circuit for SD patients and provide a theoretical basis for further clinical intervention.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; HUAI'an no.3 People's Hospital, HUAI'an no.2 Clinical college of Xuzhou Medical University, Huai'an 223001, China
| | - Liuyi Zhang
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China
| | - Yanqin Hu
- Department of Psychiatry, Chongqing Mental Health Center, Chongqing 400024, China
| | - Chaoqi Zhao
- Department of Psychiatry, Beijing Daxing District Xin Kang Hospital, Beijing 102600, China
| | - Juan Qiao
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221000, China.
| |
Collapse
|
3
|
Ma L, Chen S, Zhang Y, Qin X, Wu X. Integration patterns of functional brain networks can predict the response to abdominal acupuncture in patients with major depressive disorder. Neuroscience 2024; 560:286-296. [PMID: 39368604 DOI: 10.1016/j.neuroscience.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Abdominal acupuncture has definite efficacy for major depressive disorder (MDD). Our study examined how abdominal acupuncture regulates the integration within and between brain networks of MDD patients by neuroimaging and whether this functional integration can predict the efficacy. Forty-six female MDD patients were randomly divided into a fluoxetine + real acupuncture group (n = 22) and a fluoxetine + sham acupuncture group (n = 24). The differences in functional magnetic resonance imaging data in the intra- and inter-network functional connectivity (FC) of the default mode network (DMN), affective network (AN), salience network (SN), and cognitive control network (CCN) between the two groups were analyzed. The FCs in brain regions with the inter-group differences and support vector regression were used to predict the efficacy of abdominal acupuncture. Our results showed: that the intra- and inter-network FCs of DMN, AN, SN, and CCN could be changed by abdominal acupuncture. Using the baseline FCs within AN and DMN or AN-DMN as characteristics, combined with support vector regression, could better predict the efficacy of acupuncture. Our study suggests that abdominal acupuncture could treat MDD by regulating the integration of the functional networks DMN, AN, SN, and CCN. The baseline FCs within the DMN and AN or between them could be used as neural markers for predicting the efficacy of abdominal acupuncture.
Collapse
Affiliation(s)
- Lan Ma
- Reproductive Medicine Center, Boai Hospital of Zhongshan, Zhongshan 528400, Guangdong Province, China
| | - Shiyin Chen
- Department of Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Xin Qin
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 570102 Hainan Province, China.
| | - Xiao Wu
- Department of Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China.
| |
Collapse
|
4
|
Lynch DG, Shah KA, Powell K, Wadolowski S, Tambo W, Strohl JJ, Unadkat P, Eidelberg D, Huerta PT, Li C. Neurobehavioral Impairments Predict Specific Cerebral Damage in Rat Model of Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:950-969. [PMID: 37493939 DOI: 10.1007/s12975-023-01180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a severe form of stroke that can cause unpredictable and diffuse cerebral damage, which is difficult to detect until it becomes irreversible. Therefore, there is a need for a reliable method to identify dysfunctional regions and initiate treatment before permanent damage occurs. Neurobehavioral assessments have been suggested as a possible tool to detect and approximately localize dysfunctional cerebral regions. In this study, we hypothesized that a neurobehavioral assessment battery could be a sensitive and specific method for detecting damage in discrete cerebral regions following SAH. To test this hypothesis, a behavioral battery was employed at multiple time points after SAH induced via an endovascular perforation, and brain damage was confirmed via postmortem histopathological analysis. Our results demonstrate that impairment of sensorimotor function accurately predict damage in the cerebral cortex (AUC 0.905; sensitivity 81.8%; specificity 90.9%) and striatum (AUC 0.913; sensitivity 90.1%; specificity 100%), while impaired novel object recognition is a more accurate indicator of damage to the hippocampus (AUC 0.902; sensitivity 74.1%; specificity 83.3%) than impaired reference memory (AUC 0.746; sensitivity 72.2%; specificity 58.0%). Tests for anxiety-like and depression-like behaviors predict damage to the amygdala (AUC 0.900; sensitivity 77.0%; specificity 81.7%) and thalamus (AUC 0.963; sensitivity 86.3%; specificity 87.8%), respectively. This study suggests that recurring behavioral testing can accurately predict damage in specific brain regions, which could be developed into a clinical battery for early detection of SAH damage in humans, potentially improving early treatment and outcomes.
Collapse
Affiliation(s)
- Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin A Shah
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Joshua J Strohl
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Laboratory of Immune and Neural Networks, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Prashin Unadkat
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Center for Neurosciences, Lab for Behavioral and Molecular Neuroimaging, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - David Eidelberg
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Center for Neurosciences, Lab for Behavioral and Molecular Neuroimaging, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Patricio T Huerta
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Laboratory of Immune and Neural Networks, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
5
|
Ho SI, Lin IM, Hsieh JC, Yen CF. EEG coherences of the default mode network among patients comorbid with major depressive disorder and anxiety symptoms. J Affect Disord 2024; 361:728-738. [PMID: 38889861 DOI: 10.1016/j.jad.2024.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Higher functional connectivity within the default mode network (DMN) has been found in functional magnetic resonance imaging (fMRI) studies of major depressive disorder (MDD). We used electroencephalogram (EEG) coherence as an index of functional connectivity to examine group differences in DMN between the MDD and healthy control (HC) groups during the resting state. METHODS MDD patients with comorbid anxiety symptoms (n = 154) and healthy controls (n = 165) completed the questionnaires of depression, anxiety, and rumination. A 19-channel EEG recording was measured under resting state for all participants. EEG coherences of the delta, theta, alpha, beta, and high beta in the anterior DMN (aDMN), posterior DMN (pDMN), aDMN-pDMN, DMN-parahippocampal gyrus (PHG), and DMN-temporal gyrus were compared between the two groups. The correlations between rumination, anxiety, and DMN coherence were examined in the MDD group. RESULTS (1) No difference was found in the delta, theta, alpha, and beta within the DMN brain regions between the two groups; the MDD group showed higher high beta coherence within DMN brain regions than the HC group. (2) Rumination was negatively correlated with theta coherence of aDMN, and positively correlated with beta coherence of aDMN and with alpha coherence of pDMN and DMN-PHG. (3) Anxiety was positively correlated with high beta coherence of aDMN, pDMN, and DMN-PHG. CONCLUSIONS MDD patients with comorbid anxiety symptoms exhibited hypercoherence within the DMN brain regions. Hypercoherences were related to symptoms of rumination, and anxiety may be a biomarker for MDD patients with comorbid anxiety symptoms.
Collapse
Affiliation(s)
- Sok-In Ho
- Department of Psychology, College of Humanities and Social Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - I-Mei Lin
- Department of Psychology, College of Humanities and Social Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Graduate Institute of Medicine, Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
6
|
Xia Z, Yang PY, Chen SL, Zhou HY, Yan C. Uncovering the power of neurofeedback: a meta-analysis of its effectiveness in treating major depressive disorders. Cereb Cortex 2024; 34:bhae252. [PMID: 38889442 DOI: 10.1093/cercor/bhae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Neurofeedback, a non-invasive intervention, has been increasingly used as a potential treatment for major depressive disorders. However, the effectiveness of neurofeedback in alleviating depressive symptoms remains uncertain. To address this gap, we conducted a comprehensive meta-analysis to evaluate the efficacy of neurofeedback as a treatment for major depressive disorders. We conducted a comprehensive meta-analysis of 22 studies investigating the effects of neurofeedback interventions on depression symptoms, neurophysiological outcomes, and neuropsychological function. Our analysis included the calculation of Hedges' g effect sizes and explored various moderators like intervention settings, study designs, and demographics. Our findings revealed that neurofeedback intervention had a significant impact on depression symptoms (Hedges' g = -0.600) and neurophysiological outcomes (Hedges' g = -0.726). We also observed a moderate effect size for neurofeedback intervention on neuropsychological function (Hedges' g = -0.418). As expected, we observed that longer intervention length was associated with better outcomes for depressive symptoms (β = -4.36, P < 0.001) and neuropsychological function (β = -2.89, P = 0.003). Surprisingly, we found that shorter neurofeedback sessions were associated with improvements in neurophysiological outcomes (β = 3.34, P < 0.001). Our meta-analysis provides compelling evidence that neurofeedback holds promising potential as a non-pharmacological intervention option for effectively improving depressive symptoms, neurophysiological outcomes, and neuropsychological function in individuals with major depressive disorders.
Collapse
Affiliation(s)
- Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Peng-Yuan Yang
- Department of Methodology and Statistics, Faculty of Behavioral and Social Sciences, Tilburg University, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
| | - Si-Lu Chen
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Han-Yu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, 1688 Lianhua Road, Hefei 230601, China
| |
Collapse
|
7
|
Yeo D, Lee S, Choi H, Park MH, Park B. Emotional abuse mediated by negative automatic thoughts impacts functional connectivity during adolescence. Neurobiol Stress 2024; 30:100623. [PMID: 38572483 PMCID: PMC10987907 DOI: 10.1016/j.ynstr.2024.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Background Emotional abuse during childhood and adolescence is thought to be associated with the brain; however, the neural mechanism underlying the cognitive process remains unknown. Therefore, we aimed to investigate the mediating effect of negative automatic thoughts on the relationship between emotional abuse and resting-state functional connectivity (rsFC) during adolescence. Method Our community sample included 54 adolescents aged 13-17 years in the statistical analysis. Resting-state functional and structural magnetic resonance imaging (MRI) was performed, while emotional abuse and negative automatic thoughts were assessed using self-reported scales. A mediation analysis was used to assess the contributions of early traumatic events and negative automatic thoughts to resting functional connectivity. Result Higher negative automatic thoughts were associated with lower connectivity in the context of greater emotional abuse (i.e., suppression effect). Thus, the relationships between emotional abuse and connectivity in the precuneus (pCun)-medial prefrontal cortex, parahippocampal cortex-extrastriate cortex, and temporal cortex-temporal pole were decreased by negative automatic thoughts. In contrast, functional connections in the pCun-pCun, pCun-precuneus/posterior cingulate cortex, and nucleus accumbens-somatomotor areas were strongly mediated when emotionally abused adolescents reported a high tendency for negative automatic thoughts. Conclusion Negative automatic thoughts strengthened the relationship between emotional abuse and rsFC. These findings highlight the underlying cognitive processing of the traumatic event-neural system, supporting the use of cognitive therapy for post-traumatic symptoms.
Collapse
Affiliation(s)
- Dageon Yeo
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Seulgi Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Haemi Choi
- Department of Psychiatry, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Hyeon Park
- Department of Psychiatry, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| |
Collapse
|
8
|
Zhou Z, Gao Y, Bao W, Liang K, Cao L, Tang M, Li H, Hu X, Zhang L, Sun H, Roberts N, Gong Q, Huang X. Distinctive intrinsic functional connectivity alterations of anterior cingulate cortex subdivisions in major depressive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105583. [PMID: 38365137 DOI: 10.1016/j.neubiorev.2024.105583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/22/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Evidence of whether the intrinsic functional connectivity of anterior cingulate cortex (ACC) and its subregions is altered in major depressive disorder (MDD) remains inconclusive. A systematic review and meta-analysis were therefore performed on the whole-brain resting-state functional connectivity (rsFC) studies using the ACC and its subregions as seed regions in MDD, in order to draw more reliable conclusions. Forty-four ACC-based rsFC studies were included, comprising 25 subgenual ACC-based studies, 11 pregenual ACC-based studies, and 17 dorsal ACC-based studies. Specific alterations of rsFC were identified for each ACC subregion in patients with MDD, with altered rsFC of subgenual ACC in emotion-related brain regions, of pregenual ACC in sensorimotor-related regions, and of dorsal ACC in cognition-related regions. Furthermore, meta-regression analysis revealed a significant negative correlation between the pgACC-caudate hypoconnectivity and percentage of female patients in the study cohort. This meta-analysis provides robust evidence of altered intrinsic functional connectivity of the ACC subregions in MDD, which may hold relevance to understanding the origin of, and treating, the emotional, sensorimotor and cognitive dysfunctions that are often observed in these patients.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Science, Chengdu, China
| | - Neil Roberts
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Centre for Reproductive Health (CRH), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Science, Chengdu, China; The Xiaman Key Lab of psychoradiology and neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Science, Chengdu, China; The Xiaman Key Lab of psychoradiology and neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Mizzi S, Pedersen M, Rossell SL, Rendell P, Terrett G, Heinrichs M, Labuschagne I. Resting-state amygdala subregion and precuneus connectivity provide evidence for a dimensional approach to studying social anxiety disorder. Transl Psychiatry 2024; 14:147. [PMID: 38485930 PMCID: PMC10940725 DOI: 10.1038/s41398-024-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Social anxiety disorder (SAD) is a prevalent and disabling mental health condition, characterized by excessive fear and anxiety in social situations. Resting-state functional magnetic resonance imaging (fMRI) paradigms have been increasingly used to understand the neurobiological underpinnings of SAD in the absence of threat-related stimuli. Previous studies have primarily focused on the role of the amygdala in SAD. However, the amygdala consists of functionally and structurally distinct subregions, and recent studies have highlighted the importance of investigating the role of these subregions independently. Using multiband fMRI, we analyzed resting-state data from 135 participants (42 SAD, 93 healthy controls). By employing voxel-wise permutation testing, we examined group differences of fMRI connectivity and associations between fMRI connectivity and social anxiety symptoms to further investigate the classification of SAD as a categorical or dimensional construct. Seed-to-whole brain functional connectivity analysis using multiple 'seeds' including the amygdala and its subregions and the precuneus, revealed no statistically significant group differences. However, social anxiety severity was significantly negatively correlated with functional connectivity of the precuneus - perigenual anterior cingulate cortex and positively correlated with functional connectivity of the amygdala (specifically the superficial subregion) - parietal/cerebellar areas. Our findings demonstrate clear links between symptomatology and brain connectivity in the absence of diagnostic differences, with evidence of amygdala subregion-specific alterations. The observed brain-symptom associations did not include disturbances in the brain's fear circuitry (i.e., disturbances in connectivity between amygdala - prefrontal regions) likely due to the absence of threat-related stimuli.
Collapse
Affiliation(s)
- Simone Mizzi
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia.
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
- Psychiatry, St Vincent's Hospital, Fitzroy, Australia
| | - Peter Rendell
- Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Australian Catholic University, Fitzroy, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Gill Terrett
- Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Australian Catholic University, Fitzroy, Australia
| | - Markus Heinrichs
- Department of Psychology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Freiburg Brain Imaging Center, University Medical Center, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Izelle Labuschagne
- Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Australian Catholic University, Fitzroy, Australia.
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Jiao Q, Dong Y, Ma X, Ji SS, Liu X, Zhang J, Sun X, Li D, Luo X, Zhang Y. Does Baseline Cognitive Function Predict the Reduction Rate in HDRS-17 Total Scores in First-Episode, Drug-Naïve Patients with Major Depressive Disorder? Neuropsychiatr Dis Treat 2024; 20:353-361. [PMID: 38415074 PMCID: PMC10898600 DOI: 10.2147/ndt.s453447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose Major depressive disorder (MDD) is associated with worse cognitive functioning. We aim to examine the association between baseline cognitive functioning and the reduction rate in HDRS-17 total scores and to highlight the predictors of the reduction rate in HDRS-17 total scores in MDD with first-episode, drug-naïve (FED) patients. Patients and Methods Ninety FED patients were recruited consecutively and evaluated using the 17-item Hamilton Depression Rating Scale (HDRS-17), the 14-item Hamilton Anxiety Scale (HAMA-14), the Functioning Assessment Short Test (FAST) and the MATRICS Consensus Cognitive Battery (MCCB) at baseline and again at week 8. Results Eighty-four FED patients completed the study. Comparison showed that response group had significantly higher T scores in TMT-A, BACS-SC, WMS-III, BVMT-R, MSCEI and CPT-IP, but showed significantly lower scores in FAST total scores including autonomy, occupational functioning, cognitive functioning, interpersonal relationship than non- response group (all p's< 0.05). Partial correlation analysis also found that the reduction rate in HDRS-17 total scores could be negatively associated with autonomy, cognitive functioning and interpersonal relationship domains as well as total FAST scores, also was further positively associated with T-scores of BACS-SC, CPT-IP and MSCEI in MCCB, even when accounting for potential confounders. Furthermore, the levels of cognitive function domain, autonomy domain in FAST, and BACS-SC, CPT-IP in MCCB may predict the reduction rate in HDRS-17 total scores in FED patients (all p's< 0.05). Conclusion Our findings underscore significant correlations between baseline functioning and the reduction rate in HDRS-17 total scores in FED patients. Moreover, better baseline cognitive function, autonomy, speed of processing and attention/vigilance are more likely to predict patients' response to antidepressant treatment, indicating pre-treatment better cognitive functioning may be predictors to treatment response in FED.
Collapse
Affiliation(s)
- Qingyan Jiao
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, 300222, People’s Republic of China
| | - Yeqing Dong
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, People’s Republic of China
| | - Xiaojuan Ma
- Tianjin Medical College, Tianjin, 300222, People’s Republic of China
| | - Shiyi Suzy Ji
- Teachers College, Columbia University, New York, NY, USA
| | - Xinyu Liu
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, 300222, People’s Republic of China
| | - Jian Zhang
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, 300222, People’s Republic of China
| | - Xia Sun
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, 300222, People’s Republic of China
| | - Dazhi Li
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, 300222, People’s Republic of China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Yong Zhang
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, 300222, People’s Republic of China
| |
Collapse
|
11
|
Videtta G, Squarcina L, Prunas C, Brambilla P, Delvecchio G. White matter integrity and medication response to antidepressants in major depressive disorder: a review of the literature. Front Psychiatry 2024; 14:1335706. [PMID: 38361831 PMCID: PMC10867229 DOI: 10.3389/fpsyt.2023.1335706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024] Open
Abstract
Major Depressive Disorder (MDD) is a severe psychiatric disorder characterized by selective impairments in mood regulation, cognition and behavior. Although it is well-known that antidepressants can effectively treat moderate to severe depression, the biochemical effects of these medications on white matter (WM) integrity are still unclear. Therefore, the aim of the study is to review the main scientific evidence on the differences in WM integrity in responders and non-responders to antidepressant medications. A record search was performed on three datasets (PubMed, Scopus and Web of Science) and ten records matched our inclusion criteria. Overall, the reviewed studies highlighted a good efficacy of antidepressants in MDD treatment. Furthermore, there were differences in WM integrity between responders and non-responders, mainly localized in cingulate cortices, hippocampus and corpus callosum, where the former group showed higher fractional anisotropy and lower axial diffusivity values. Modifications in WM integrity might be partially explained by branching and proliferation as well as neurogenesis of axonal fibers mediated by antidepressants, which in turn may have positively affected brain metabolism and increase the quantity of the serotonergic neurotransmitter within synaptic clefts. However, the reviewed studies suffer from some limitations, including the heterogeneity in treatment duration, antidepressant administration, medical posology, and psychiatric comorbidities. Therefore, future studies are needed to reduce confounding effects of antidepressant medications and to adopt longitudinal and multimodal approaches in order to better characterize the differences in WM integrity between responders and non-responders.
Collapse
Affiliation(s)
- Giovanni Videtta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Ou Y, Ni X, Gao X, Yu Y, Zhang Y, Wang Y, Liu J, Yin Z, Rong J, Sun M, Chen J, Tang Z, Xiao W, Zhao L. Structural and functional changes of anterior cingulate cortex subregions in migraine without aura: relationships with pain sensation and pain emotion. Cereb Cortex 2024; 34:bhae040. [PMID: 38342690 PMCID: PMC10859245 DOI: 10.1093/cercor/bhae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/13/2024] Open
Abstract
Migraine without aura is a multidimensional neurological disorder characterized by sensory, emotional, and cognitive symptoms linked to structural and functional abnormalities in the anterior cingulate cortex. Anterior cingulate cortex subregions play differential roles in the clinical symptoms of migraine without aura; however, the specific patterns and mechanisms remain unclear. In this study, voxel-based morphometry and seed-based functional connectivity were used to investigate structural and functional alterations in the anterior cingulate cortex subdivisions in 50 patients with migraine without aura and 50 matched healthy controls. Compared with healthy controls, patients exhibited (1) decreased gray matter volume in the subgenual anterior cingulate cortex, (2) increased functional connectivity between the bilateral subgenual anterior cingulate cortex and right middle frontal gyrus, and between the posterior part of anterior cingulate cortex and right middle frontal gyrus, orbital part, and (3) decreased functional connectivity between the anterior cingulate cortex and left anterior cingulate and paracingulate gyri. Notably, left subgenual anterior cingulate cortex was correlated with the duration of each attack, whereas the right subgenual anterior cingulate cortex was associated with migraine-specific quality-of-life questionnaire (emotion) and self-rating anxiety scale scores. Our findings provide new evidence supporting the hypothesis of abnormal anterior cingulate cortex subcircuitry, revealing structural and functional abnormalities in its subregions and emphasizing the potential involvement of the left subgenual anterior cingulate cortex-related pain sensation subcircuit and right subgenual anterior cingulate cortex -related pain emotion subcircuit in migraine.
Collapse
Affiliation(s)
- Yangxu Ou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Xixiu Ni
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Xiaoyu Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Yang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Yutong Zhang
- Department of Scientific Research and Education and Training Management, the Third People’s Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Yanan Wang
- Department of Pain Treatment, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, China
| | - Zihan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Jing Rong
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
- Sichuan Clinical Medical Research Center for Acupuncture and Moxibustion, Chengdu, Sichuan 611137, China
| | - Jiao Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
- Sichuan Clinical Medical Research Center for Acupuncture and Moxibustion, Chengdu, Sichuan 611137, China
| | - Zili Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Wang Xiao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
- Sichuan Clinical Medical Research Center for Acupuncture and Moxibustion, Chengdu, Sichuan 611137, China
| |
Collapse
|
13
|
Lin S, Zhang C, Zhang Y, Chen S, Lin X, Peng B, Xu Z, Hou G, Qiu Y. Shared and specific neurobiology in bipolar disorder and unipolar disorder: Evidence based on the connectome gradient and a transcriptome-connectome association study. J Affect Disord 2023; 341:304-312. [PMID: 37661059 DOI: 10.1016/j.jad.2023.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Distinguishing bipolar disorder (BD) and unipolar disorder (UD) remains challenging. To identify the common and diagnosis-specific neuropathological alterations and their potential molecular mechanisms in patients with UD and BD (with a current depressive episode). METHODS Resting-state functional magnetic resonance imaging was obtained from 279 participants (95 BD patients, 107 UD patients and 77 health controls). Connectome gradients analysis was performed to explore the shared and diagnosis-specific gradient alterations in BD and UD. The Allen Human Brain Atlas data was used to explore the potential gene mechanisms of the gradient alterations. RESULTS BD and UD had shared hierarchical disorganisation, including downgrading and contraction from the unimodal sensory networks (vision and sensorimotor) to the transmodal cognitive networks (limbic, frontoparietal, dorsal attention, and default) (all P < 0.05, FDR corrected) in gradient 1 and gradient 2. The BD patients had specific connectome gradient dysfunction in the subcortical network. Moreover, the hierarchical disorganisation was closely correlated with profiles of gene expression specific to the neuroglial cells in the prefrontal cortex in BD and UD, while the most correlated gene ontology biological processes and function were concentrated in synaptic signalling, calcium ion binding, and transmembrane transporter activity. CONCLUSION These findings reveal the shared and diagnosis-specific neurobiological mechanism underlying BD and UD patients, which advances our understanding of the neuromechanisms of these disorders.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Chao Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Ziyun Xu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China.
| |
Collapse
|
14
|
Deng Y, Gong P, Han S, Zhang J, Zhang S, Zhang B, Lin Y, Xu K, Wen G, Liu K. Reduced cerebral cortex thickness is related to overexpression of exosomal miR-146a-5p in medication-free patients with major depressive disorder. Psychol Med 2023; 53:6253-6260. [PMID: 36426595 PMCID: PMC10520590 DOI: 10.1017/s0033291722003567] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies have confirmed that miR-146a-5p overexpression suppresses neurogenesis, thereby enhancing depression-like behaviors. However, it remains unclear how miR-146a-5p dysregulation produces in vivo brain structural abnormalities in patients with major depressive disorder (MDD). METHODS In this case-control study, we combined cortical morphology analysis of magnetic resonance imaging (MRI) and miR-146a-5p quantification to investigate the neuropathological effect of miR-146a-5p on cortical thickness in MDD patients. Serum-derived exosomes that were considered to readily cross the blood-brain barrier and contain miR-146a-5p were isolated for miRNA quantification. Moreover, follow-up MRI scans were performed in the MDD patients after 6 weeks of antidepressant treatment to further validate the clinical relevance of the relationship between miR-146a-5p and brain structural abnormalities. RESULTS In total, 113 medication-free MDD patients and 107 matched healthy controls were included. Vertex-vise general linear model revealed miR-146a-5p-dependent cortical thinning in MDD patients compared with healthy individuals, i.e., overexpression of miR-146a-5p was associated with reduced cortical thickness in the left orbitofrontal cortex (OFC), anterior cingulate cortex, bilateral lateral occipital cortices (LOCs), etc. Moreover, this relationship between baseline miR-146a-5p and cortical thinning was nonsignificant for all regions in the patients who had received antidepressant treatment, and higher baseline miR-146a-5p expression was found to be related to greater longitudinal cortical thickening in the left OFC and right LOC. CONCLUSIONS The findings of this study reveal a relationship between miR-146a-5p overexpression and cortical atrophy and thus may help specify the in vivo mediating effect of miR-146a-5p dysregulation on brain structural abnormalities in patients with MDD.
Collapse
Affiliation(s)
- Yanjia Deng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ping Gong
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shuguang Han
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Jingyu Zhang
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Lin
- The fifth affiliated hospital of Sun-Yat Sen University, Sun-Yat Sen University, Zhuhai, China
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Ge Wen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Nitzan K, Frenkel D, Parker MO, Doron R. Editorial: Alzheimer-related affective symptoms - mechanism and treatment. Front Aging Neurosci 2023; 15:1267304. [PMID: 37680539 PMCID: PMC10482250 DOI: 10.3389/fnagi.2023.1267304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
- Keren Nitzan
- Department of Education and Psychology, The Open University, Ra'anana, Israel
| | - Dan Frenkel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Matthew O. Parker
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Ravid Doron
- Department of Education and Psychology, The Open University, Ra'anana, Israel
| |
Collapse
|
16
|
Wang Z, Baeken C, Wu GR. Metabolic Covariance Connectivity of Posterior Cingulate Cortex Associated with Depression Symptomatology Level in Healthy Young Adults. Metabolites 2023; 13:920. [PMID: 37623864 PMCID: PMC10456574 DOI: 10.3390/metabo13080920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Early detection in the development of a Major Depressive Disorder (MDD) could guide earlier clinical interventions. Although MDD can begin at a younger age, most people have their first episode in young adulthood. The underlying pathophysiological mechanisms relating to such an increased risk are not clear. The posterior cingulate cortex (PCC), exhibiting high levels of brain connectivity and metabolic activity, plays a pivotal role in the pathological mechanism underlying MDD. In the current study, we used the (F-18) fluorodeoxyglucose (FDG) positron emission tomography (PET) to measure metabolic covariance connectivity of the PCC and investigated its association with depression symptomatology evaluated by the Centre for Epidemiological Studies Depression Inventory-Revised (CESD-R) among 27 healthy individuals aged between 18 and 23 years. A significant negative correlation has been observed between CESD-R scale scores and the PCC metabolic connectivity with the anterior cingulate, medial prefrontal cortex, inferior and middle frontal gyrus, as well as the insula. Overall, our findings suggest that the neural correlates of depressive symptomatology in healthy young adults without a formal diagnosis involve the metabolic connectivity of the PCC. Our findings may have potential implications for early identification and intervention in people at risk of developing depression.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China;
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium;
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
17
|
Lynch DG, Shah KA, Powell K, Wadolowski S, Ayol WT, Strohl JJ, Unadkat P, Eidelberg D, Huerta PT, Li C. Neurobehavioral impairments predict specific cerebral damage in rat model of subarachnoid hemorrhage. RESEARCH SQUARE 2023:rs.3.rs-2943917. [PMID: 37292945 PMCID: PMC10246236 DOI: 10.21203/rs.3.rs-2943917/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a severe form of stroke that can cause unpredictable and diffuse cerebral damage, which is difficult to detect until it becomes irreversible. Therefore, there is a need for a reliable method to identify dysfunctional regions and initiate treatment before permanent damage occurs. Neurobehavioral assessments have been suggested as a possible tool to detect and approximately localize dysfunctional cerebral regions. In this study, we hypothesized that a neurobehavioral assessment battery could be a sensitive and specific early warning for damage in discrete cerebral regions following SAH. To test this hypothesis, a behavioral battery was employed at multiple time points after SAH induced via an endovascular perforation, and brain damage was confirmed via postmortem histopathological analysis. Our results demonstrate that impairment of sensorimotor function accurately predict damage in the cerebral cortex (AUC: 0.905; sensitivity: 81.8%; specificity: 90.9%) and striatum (AUC: 0.913; sensitivity: 90.1%; specificity: 100%), while impaired novel object recognition is a more accurate indicator of damage to the hippocampus (AUC: 0.902; sensitivity: 74.1%; specificity: 83.3%) than impaired reference memory (AUC: 0.746; sensitivity: 72.2%; specificity: 58.0%). Tests for anxiety-like and depression-like behaviors predict damage to the amygdala (AUC: 0.900; sensitivity: 77.0%; specificity: 81.7%) and thalamus (AUC: 0.963; sensitivity: 86.3%; specificity: 87.8%), respectively. This study suggests that recurring behavioral testing can accurately predict damage in specific brain regions, which could be developed into a clinical battery for early detection of SAH damage in humans, potentially improving early treatment and outcomes.
Collapse
Affiliation(s)
- Daniel G Lynch
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell
| | | | | | | | | | | | | | | | | | - Chunyan Li
- The Feinstein Institutes for Medical Research
| |
Collapse
|
18
|
Endocannabinoid 2-Arachidonoylglycerol Levels in the Anterior Cingulate Cortex, Caudate Putamen, Nucleus Accumbens, and Piriform Cortex Were Upregulated by Chronic Restraint Stress. Cells 2023; 12:cells12030393. [PMID: 36766735 PMCID: PMC9913316 DOI: 10.3390/cells12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated in habituation to stress, and its augmentation reduces stress-induced anxiety-like behavior. Chronic restraint stress (CRS) changes the 2-AG levels in some gross brain areas, such as the forebrain. However, the detailed spatial distribution of 2-AG and its changes by CRS in stress processing-related anatomical structures such as the anterior cingulate cortex (ACC), caudate putamen (CP), nucleus accumbens (NAc), and piriform cortex (PIR) are still unclear. In this study, mice were restrained for 30 min in a 50 mL-centrifuge tube for eight consecutive days, followed by imaging of the coronal brain sections of control and stressed mice using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The results showed that from the forebrain to the cerebellum, 2-AG levels were highest in the hypothalamus and lowest in the hippocampal region. 2-AG levels were significantly (p < 0.05) upregulated and 2-AG precursors levels were significantly (p < 0.05) downregulated in the ACC, CP, NAc, and PIR of stressed mice compared with control mice. This study provided direct evidence of 2-AG expression and changes, suggesting that 2-AG levels are increased in the ACC CP, NAc, and PIR when individuals are under chronic stress.
Collapse
|
19
|
Sun J, Ma Y, Guo C, Du Z, Chen L, Wang Z, Li X, Xu K, Luo Y, Hong Y, Yu X, Xiao X, Fang J, Lu J. Distinct patterns of functional brain network integration between treatment-resistant depression and non treatment-resistant depression: A resting-state functional magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110621. [PMID: 36031163 DOI: 10.1016/j.pnpbp.2022.110621] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous neuroimaging has paid little attention to the differences in brain network integration between patients with treatment-resistant depression(TRD) and non-TRD (nTRD), and the relationship between their impaired brain network integration and clinical symptoms has not been elucidated. METHOD Eighty one major depressive disorder (MDD) patients (40 in TRD, 41 in nTRD) and 40 healthy controls (HCs) were enrolled for the functional magnetic resonance imaging (fMRI) scans. A seed-based functional connectivity (FC) method was used to investigate the brain network abnormalities of default mode network (DMN), affective network (AN), salience network (SN) and cognitive control network (CCN) for the MDD. Finally, the correlation was analyzed between the abnormal FCs and 17-item Hamilton Rating Scale for Depression scale (HAMD-17) scores. RESULTS Compared with the HC group, the FCs in DMN, AN, SN, CCN were altered in both the TRD and nTRD groups. Compared with the nTRD group, FC alterations in the AN and CCN were more abnormal in the TRD group, and the FC alterations were generally decreased at the SN in the TRD group. In addition, the FC values of right dorsolateral prefrontal cortices and left caudate nucleus in the TRD group and the FC values of right subgenual anterior cingulate cortex and left middle temporal gyrus in the nTRD group were positively correlated with HAMD-17 scale scores. CONCLUSIONS Abnormal FCs are present in four brain networks (DMN, AN, SN, CCN) in both the TRD and nTRD groups. Except of DMN, FCs in AN, SN and CCN maybe underlay the neurobiological mechanism in differentiating TRD from nTRD.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700 Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Xiaojiao Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Ke Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, 100026 Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, 100026 Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China.
| | - Jie Lu
- Xuanwu Hospital, Capital Medical University, 100053 Beijing, China.
| |
Collapse
|
20
|
Rong B, Gao G, Sun L, Zhou M, Zhao H, Huang J, Wang H, Xiao L, Wang G. Preliminary findings on the effect of childhood trauma on the functional connectivity of the anterior cingulate cortex subregions in major depressive disorder. Front Psychiatry 2023; 14:1159175. [PMID: 37139313 PMCID: PMC10150086 DOI: 10.3389/fpsyt.2023.1159175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Objectives Childhood trauma (CT) is a known risk factor for major depressive disorder (MDD), but the mechanisms linking CT and MDD remain unknown. The purpose of this study was to examine the influence of CT and depression diagnosis on the subregions of the anterior cingulate cortex (ACC) in MDD patients. Methods The functional connectivity (FC) of ACC subregions was evaluated in 60 first-episode, drug-naïve MDD patients (40 with moderate-to-severe and 20 with no or low CT), and 78 healthy controls (HC) (19 with moderate-to-severe and 59 with no or low CT). The correlations between the anomalous FC of ACC subregions and the severity of depressive symptoms and CT were investigated. Results Individuals with moderate-to severe CT exhibited increased FC between the caudal ACC and the middle frontal gyrus (MFG) than individuals with no or low CT, regardless of MDD diagnosis. MDD patients showed lower FC between the dorsal ACC and the superior frontal gyrus (SFG) and MFG. They also showed lower FC between the subgenual/perigenual ACC and the middle temporal gyrus (MTG) and angular gyrus (ANG) than the HCs, regardless of CT severity. The FC between the left caudal ACC and the left MFG mediated the correlation between the Childhood Trauma Questionnaire (CTQ) total score and HAMD-cognitive factor score in MDD patients. Conclusion Functional changes of caudal ACC mediated the correlation between CT and MDD. These findings contribute to our understanding of the neuroimaging mechanisms of CT in MDD.
Collapse
Affiliation(s)
- Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingzhe Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haomian Zhao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhua Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanling Wang
- Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Ling Xiao,
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Gaohua Wang,
| |
Collapse
|
21
|
Abnormal dynamic functional network connectivity in first-episode, drug-naïve patients with major depressive disorder. J Affect Disord 2022; 319:336-343. [PMID: 36084757 DOI: 10.1016/j.jad.2022.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Dynamic functional network connectivity (dFNC) could capture temporal features of spontaneous brain activity during MRI scanning, and it might be a powerful tool to examine functional brain network alters in major depressive disorder (MDD). Therefore, this study investigated the changes in temporal properties of dFNC of first-episode, drug-naïve patients with MDD. A total of 48 first-episode, drug-naïve MDD patients and 46 age- and gender-matched healthy controls were recruited in this study. Sliding windows were implied to construct dFNC. We assessed the relationships between altered dFNC temporal properties and depressive symptoms. Receiver operating characteristic (ROC) curve analyses were used to examine the diagnostic performance of these altered temporal properties. The results showed that patients with MDD have more occurrences and spent more time in a weak connection state, but with fewer occurrences and shorter dwell time in a strong connection state. Importantly, the fractional time and mean dwell time of state 2 was negatively correlated with Hamilton Depression Rating Scale (HDRS) scores. ROC curve analysis demonstrated that these temporal properties have great identified power including the fractional time and mean dwell time in state 2, and the AUC is 0.872, 0.837, respectively. The AUC of the combination of fractional time and mean dwell time in state 2 with age, gender is 0.881. Our results indicated the temporal properties of dFNC are altered in first-episode, drug-naïve patients with MDD, and these changes' properties could serve as a potential biomarker in MDD.
Collapse
|
22
|
Yuan Q, Liang X, Xue C, Qi W, Chen S, Song Y, Wu H, Zhang X, Xiao C, Chen J. Altered anterior cingulate cortex subregional connectivity associated with cognitions for distinguishing the spectrum of pre-clinical Alzheimer's disease. Front Aging Neurosci 2022; 14:1035746. [PMID: 36570538 PMCID: PMC9768430 DOI: 10.3389/fnagi.2022.1035746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are considered part of the early progression continuum of Alzheimer's disease (AD). The anterior cingulate cortex (ACC), a hub of information processing and regulation in the brain, plays an essential role in AD pathophysiology. In the present study, we aimed to systematically identify changes in the functional connectivity (FC) of ACC subregions in patients with SCD and aMCI and evaluate the association of these changes with cognition. Materials and methods Functional connectivity (FC) analysis of ACC sub-regions was performed among 66 patients with SCD, 71 patients with aMCI, and 78 healthy controls (HCs). Correlation analyses were performed to examine the relationship between FC of altered ACC subnetworks and cognition. Results Compared to HCs, SCD patients showed increased FC of the bilateral precuneus (PCUN) and caudal ACC, left superior frontal gyrus (SFG) and subgenual ACC, left inferior parietal lobule (IPL) and dorsal ACC, left middle occipital gyrus (MOG) and dorsal ACC, and left middle temporal gyrus (MTG) and subgenual ACC, while aMCI patients showed increased FC of the left inferior frontal gyrus (IFG) and dorsal ACC and left medial frontal gyrus (MFG) and subgenual ACC. Compared to patients with SCD, patients with aMCI showed increased FC of the right MFG and dorsal ACC and left ACC and subgenual ACC, while the left posterior cingulate cortex (PCC) showed decreased FC with the caudal ACC. Moreover, some FC values among the altered ACC subnetworks were significantly correlated with episodic memory and executive function. Conclusion SCD and aMCI, part of the spectrum of pre-clinical AD, share some convergent and divergent altered intrinsic connectivity of ACC subregions. These results may serve as neuroimaging biomarkers of the preclinical phase of AD and provide new insights into the design of preclinical interventions.
Collapse
Affiliation(s)
- Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Wu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xulian Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Chaoyong Xiao,
| | - Jiu Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China,Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,Jiu Chen,
| |
Collapse
|
23
|
He J, Wang D, Ban M, Kong L, Xiao Q, Yuan F, Zhu X. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel 1H magnetic resonance spectroscopy study. J Affect Disord 2022; 318:263-271. [PMID: 36087788 DOI: 10.1016/j.jad.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous studies have shown major depressive disorder (MDD) is associated with altered neuro-metabolites in the anterior cingulate cortex (ACC). However, the regional metabolic heterogeneity in the ACC in individuals with MDD remains unclear. METHODS We recruited 59 first-episode, treatment-naive young adults with MDD and 50 healthy controls who underwent multi-voxel 1H-MRS scanning at 3 T (Tesla) with voxels placed in the ACC, which was divided into two subregions, pregenual ACC (pACC) and anterior midcingulate cortex (aMCC). Between and within-subjects metabolite concentration variations were analyzed with SPSS. RESULTS Compared with control subjects, patients with MDD exhibited higher glutamate (Glu) and glutamine (Gln) levels in the pACC and higher myo-inositol (MI) level in the aMCC. We observed higher Glu and Gln levels and lower N-acetyl-aspartate (NAA) level in the pACC than those in the aMCC in both MDD and healthy control (HC) groups. More importantly, the metabolite concentration gradients of Glu, Gln and NAA were more pronounced in MDD patients relative to HCs. In the MDD group, the MI level in the aMCC positively correlated with the age of onset. LIMITATIONS The use of the relative concentration of metabolites constitutes a key study limitation. CONCLUSIONS We observed inconsistent alterations and distribution of neuro-metabolites concentration in the pACC and aMCC, revealing regional metabolic heterogeneity of ACC in first-episode, treatment-naive young individuals with MDD. These results provided new evidence for abnormal neuro-metabolites of ACC in the pathophysiology of MDD and suggested that pACC and aMCC might play different roles in MDD.
Collapse
Affiliation(s)
- Jincheng He
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiting Ban
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xiao
- Mental Health Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Sun J, Du Z, Ma Y, Guo C, Gao S, Luo Y, Chen Q, Hong Y, Xiao X, Yu X, Fang J. Characterization of Resting-State Striatal Differences in First-Episode Depression and Recurrent Depression. Brain Sci 2022; 12:brainsci12121603. [PMID: 36552063 PMCID: PMC9776048 DOI: 10.3390/brainsci12121603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
The presence of reward deficits in major depressive disorder is associated with abnormal striatal function. However, differences in striatal whole-brain functional between recurrent depressive episode (RDE) and first-episode depression (FDE) have not been elucidated. Thirty-three patients with RDE, 27 with FDE, and 35 healthy controls (HCs) were recruited for this study. A seed-based functional connectivity (FC) method was used to analyze abnormalities in six predefined striatal subregion circuits among the three groups of subjects and to further explore the correlation between abnormal FC and clinical symptoms. The results revealed that compared with the FDE group, the RDE group showed higher FC of the striatal subregion with the left middle occipital gyrus, left orbital area of the middle frontal gyrus, and bilateral posterior cerebellar gyrus, while showing lower FC of the striatal subregion with the right thalamus, left inferior parietal lobule, left middle cingulate gyrus, right angular gyrus, right cerebellum anterior lobe, and right caudate nucleus. In the RDE group, the HAMD-17 scores were positively correlated with the FC between the left dorsal rostral putamen and the left cerebellum posterior lobe. This study provides new insights into understanding the specificity of striatal circuits in the RDE group.
Collapse
Affiliation(s)
- Jifei Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yue Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chunlei Guo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shanshan Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yi Luo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyan Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Hong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Correspondence: ; Tel.: +86-010-88001493
| |
Collapse
|
25
|
Jan D, de Vega M, López-Pigüi J, Padrón I. Applying Deep Learning on a Few EEG Electrodes during Resting State Reveals Depressive States. A Data Driven Study. Brain Sci 2022; 12:1506. [PMID: 36358432 PMCID: PMC9688627 DOI: 10.3390/brainsci12111506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 01/10/2024] Open
Abstract
The growing number of depressive people and the overload in primary care services make it necessary to identify depressive states with easily accessible biomarkers such as mobile electroencephalography (EEG). Some studies have addressed this issue by collecting and analyzing EEG resting state in a search of appropriate features and classification methods. Traditionally, EEG resting state classification methods for depression were mainly based on linear or a combination of linear and non-linear features. We hypothesize that participants with ongoing depressive states differ from controls in complex patterns of brain dynamics that can be captured in EEG resting state data, using only nonlinear measures on a few electrodes, making it possible to develop cheap and wearable devices that could be even monitored through smartphones. To validate such a perspective, a resting-state EEG study was conducted with 50 participants, half with depressive state (DEP) and half controls (CTL). A data-driven approach was applied to select the most appropriate time window and electrodes for the EEG analyses, as suggested by Giacometti, as well as the most efficient nonlinear features and classifiers, to distinguish between CTL and DEP participants. Nonlinear features showing temporo-spatial and spectral complexity were selected. The results confirmed that computing nonlinear features from a few selected electrodes in a 15 s time window are sufficient to classify DEP and CTL participants accurately. Finally, after training and testing internally the classifier, the trained machine was applied to EEG resting state data (CTL and DEP) from a publicly available database, validating the capacity of generalization of the classifier with data from different equipment, population, and environment obtaining an accuracy near 100%.
Collapse
Affiliation(s)
- Damián Jan
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel de Vega
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Joana López-Pigüi
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
- Department of Psychology, Faculty of Health Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Iván Padrón
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
- Departamento de Psicología Evolutiva y de la Educación, Campus de Guajara, Universidad de La Laguna, Apartado 456, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
26
|
Ye Y, Wang C, Lan X, Li W, Fu L, Zhang F, Liu H, Wu K, Zhou Y, Ning Y. Baseline patterns of resting functional connectivity within posterior default-mode intranetwork associated with remission to antidepressants in major depressive disorder. Neuroimage Clin 2022; 36:103230. [PMID: 36274375 PMCID: PMC9668631 DOI: 10.1016/j.nicl.2022.103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The default mode network (DMN) is implicated in the pathophysiology of major depressive disorder (MDD), and functional connectivity (FC) involved in DMN is suggested to be associated with antidepressant remission. The goal of this study is to recognize relationships between FC within DMN and early amelioration in MDD patients and to further test the capacity of FC to predict early efficacy. METHODS In total 66 MDD patients and 57 healthy controls were recruited for resting-state functional magnetic resonance imaging scans at baseline. After four weeks of treatment with Escitalopram or Venlafaxine, patients were divided into subgroups with remitters (R, n = 31) and non-remitters (NR, n = 35). Independent component analysis (ICA) was used to compare intranetwork functional connectivity (intra-FC) in DMN between the three groups. RESULTS Relative to NR-MDD group and HCs, the R-MDD group showed significantly higher intra-FC in the right angular gyrus of DMN, and the intra-FC was positively correlated with the reduction ratio of the depressive symptom scores. The ROC curve analysis revealed that intra-FC exhibited a high diagnostic value for remission. CONCLUSION These findings indicated that intra-FC related to the DMN is a prognostic marker that can potentially predict early remission of symptoms after antidepressant treatment.
Collapse
Affiliation(s)
- Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Weicheng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Ling Fu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Fan Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Haiyan Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China.
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China.
| |
Collapse
|
27
|
Zhang Q, Wu J, Pei C, Ma M, Dong Y, Gao M, Zhang H. Altered functional connectivity in emotional subregions of the anterior cingulate cortex in young and middle-aged patients with major depressive disorder: A resting-state fMRI study. Biol Psychol 2022; 175:108426. [PMID: 36152733 DOI: 10.1016/j.biopsycho.2022.108426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND It has been demonstrated that the anterior cingulate cortex (ACC) has three subregions, involved in behavior, cognition, and emotion. However, the intrinsic connectivity of the ACC subregions in patients with major depressive disorder (MDD) is still unclear. In this study, functional magnetic resonance imaging (fMRI) data was used to detect the functional connectivity (FC) of ACC subregions and the correlation with the disease severity in young and middle-aged patients with MDD. METHODS A total of 36 young and middle-aged patients with first-episode MDD and 36 healthy controls (HCs) were enrolled in this study. FC was applied to investigate altered connectivity of the ACC subregion in MDD patients compared to HCs. Correlation analysis was then used to assess possible relationship between the neuroimaging findings and clinical symptoms in the patient group. RESULTS Compared to HCs, young and middle-aged patients had significantly decreased FC between the emotional subregion of the ACC and the hippocampus, thalamus, insula, angular gyrus, and posterior cingulate cortex. The FC between the ACC emotional subregion and the insula, the AG, the RPHG was negatively correlated with depression index. The FC between the ACC emotional subregion and the putamen was positively correlated with depression index. CONCLUSION The present findings indicate that abnormal ACC subregions-seeded FC may be implicated in the MDD-related abnormalities of emotion regulation and information processing. And there is a correlation between the above FC changes and the clinical symptoms of young and middle-aged MDD patients. This study may provide preliminary evidence for the ACC-related neural mechanism in young and middle-aged MDD patients and enhance the understanding of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Qiaoying Zhang
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Jiayu Wu
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Caixia Pei
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Mingyue Ma
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Yan Dong
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Ming Gao
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China
| | - Hong Zhang
- Department of Radiology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China.
| |
Collapse
|
28
|
Zhang S, Xu X, Li Q, Chen J, Liu S, Zhao W, Cai H, Zhu J, Yu Y. Brain Network Topology and Structural–Functional Connectivity Coupling Mediate the Association Between Gut Microbiota and Cognition. Front Neurosci 2022; 16:814477. [PMID: 35422686 PMCID: PMC9002058 DOI: 10.3389/fnins.2022.814477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that gut microbiota can influence cognition via the gut–brain axis, and brain networks play a critical role during the process. However, little is known about how brain network topology and structural–functional connectivity (SC–FC) coupling contribute to gut microbiota-related cognition. Fecal samples were collected from 157 healthy young adults, and 16S amplicon sequencing was used to assess gut diversity and enterotypes. Topological properties of brain structural and functional networks were acquired by diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI data), and SC–FC coupling was further calculated. 3-Back, digit span, and Go/No-Go tasks were employed to assess cognition. Then, we tested for potential associations between gut microbiota, complex brain networks, and cognition. The results showed that gut microbiota could affect the global and regional topological properties of structural networks as well as node properties of functional networks. It is worthy of note that causal mediation analysis further validated that gut microbial diversity and enterotypes indirectly influence cognitive performance by mediating the small-worldness (Gamma and Sigma) of structural networks and some nodal metrics of functional networks (mainly distributed in the cingulate gyri and temporal lobe). Moreover, gut microbes could affect the degree of SC–FC coupling in the inferior occipital gyrus, fusiform gyrus, and medial superior frontal gyrus, which in turn influence cognition. Our findings revealed novel insights, which are essential to provide the foundation for previously unexplored network mechanisms in understanding cognitive impairment, particularly with respect to how brain connectivity participates in the complex crosstalk between gut microbiota and cognition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- *Correspondence: Jiajia Zhu,
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
- Yongqiang Yu,
| |
Collapse
|
29
|
Abnormal functional connectivity of the anterior cingulate cortex subregions mediates the association between anhedonia and sleep quality in major depressive disorder. J Affect Disord 2022; 296:400-407. [PMID: 34606812 DOI: 10.1016/j.jad.2021.09.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/05/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The anterior cingulate cortex (ACC) is a crucial region in the pathophysiology of major depressive disorder (MDD). However, the relationship between functional alterations of the ACC subregions, anhedonia and sleep quality remains unclear in MDD patients. METHODS The resting-state functional connectivity (rsFC) of ACC subregions was measured in 41 first-episode medication-naïve MDD patients and 63 healthy controls who underwent functional magnetic resonance imaging. Between-group differences were examined using two-sample t-test. Furthermore, correlation and mediation analyses were carried out to investigate the relationships between the aberrant rsFC of ACC subregions, anhedonia and sleep quality in the patients and controls. RESULTS Compared to healthy controls, the MDD patients exhibited increased rsFC of ACC subregions to areas of the anterior default mode network (DMN) and showed decreased rsFC of the right subgenual ACC to left precuneus (PCUN), which belongs to the posterior DMN. In MDD group, the sleep quality and consummatory anhedonia are correlated with some rsFC, which involves the angular gyrus (ANG) and superior frontal gyrus (SFG). More importantly, the rsFC between the right perigenual ACC and left SPG mediates the association between anhedonia and sleep quality in MDD. LIMITATIONS The cross-sectional design and the subjective questionaries for assessment. CONCLUSION These findings confirm the functional alterations of the ACC subregions and reveal the mediating role of ACC subregions in sleep and reward dysfunction in MDD.
Collapse
|