1
|
Nie P, Wang T, Wu Q, Chen W, Shen F, Huang L, Dong X. Attention Deficits in Migraine: Mismatch Negativity and P3a in an Event-Related Potential Study. J Pain Res 2025; 18:1161-1171. [PMID: 40092720 PMCID: PMC11908398 DOI: 10.2147/jpr.s506708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Attention performance in chronic migraine remains unclear. The present study aimed to explore the pre-attentive detection and attention orienting ability in individuals with chronic migraine (CM) measured by mismatch negativity (MMN) and P3a components and assess their associations with migraine characteristics. Methods This cross-sectional observational study recruited 25 individuals with episodic migraine (EM), 25 individuals with CM and 25 healthy controls (HC) matched for age, sex, and educational level. The MMN and P3a components were measured using event-related potential (ERPs) tools with auditory oddball paradigms and migraine characteristics were collected. Results Individuals with CM exhibited a longer MMN latency (p = 0.010) and a lower P3a amplitude than HC (p = 0.004) and EM (p = 0.002). Correlation analysis showed that P3a amplitude was negatively correlated with headache attack frequency and the Migraine Disability Assessment Scale (MIDAS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD) scores. Conclusion Individuals with CM showed deficits in pre-attentive detection and attention orientation. Moreover, attention-oriented dysfunction is associated with headache attack frequency, headache-related disability, anxiety and depression.
Collapse
Affiliation(s)
- Ping Nie
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Teng Wang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Qian Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Weikai Chen
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of Neurology, The Third Hospital of Xiamen, Xiamen, 361000, People’s Republic of China
| | - Feifei Shen
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Lin Huang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Xin Dong
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of Neurosurgery, Chongqing Hospital of Jiangsu Province Hospital, Chongqing, 401420, People’s Republic of China
| |
Collapse
|
2
|
Dang C, Luo X, Zhu Y, Li B, Feng Y, Xu C, Kang S, Yin G, Johnstone SJ, Wang Y, Song Y, Sun L. Automatic sensory change processing in adults with attention deficit and hyperactivity disorder: a visual mismatch negativity study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1651-1660. [PMID: 37831221 DOI: 10.1007/s00406-023-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
In addition to higher-order executive functions, underlying sensory processing ability is also thought to play an important role in Attention-Deficit/Hyperactivity Disorder (AD/HD). An event-related potential feature, the mismatch negativity, reflects the ability of automatic sensory change processing and may be correlated with AD/HD symptoms and executive functions. This study aims to investigate the characteristics of visual mismatch negativity (vMMN) in adults with AD/HD. Twenty eight adults with AD/HD and 31 healthy controls were included in this study. These two groups were matched in age, IQ and sex. In addition, both groups completed psychiatric evaluations, a visual ERP task used to elicit vMMN, and psychological measures about AD/HD symptoms and day-to-day executive functions. Compared to trols, the late vMMN (230-330 ms) was significantly reduced in the AD/HD group. Correlation analyses showed that late vMMN was correlated with executive functions but not AD/HD symptoms. However, further mediation analyses showed that different executive functions had mediated the relationships between late vMMN and AD/HD symptoms. Our findings indicate that the late vMMN, reflecting automatic sensory change processing ability, was impaired in adults with AD/HD. This impairment could have negative impact on AD/HD symptoms via affecting day-to-day executive functions.
Collapse
Affiliation(s)
- Chen Dang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiangsheng Luo
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yu Zhu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Yuan Feng
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chenyang Xu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Simin Kang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gaohan Yin
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
- Brain and Behavior Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Yufeng Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
3
|
Chien YL, Hsieh MH, Gau SSF. Mismatch Negativity and P3a in Unaffected Siblings of Individuals with Autism Spectrum Disorder and the Exploration on the Neurocognitive Implications. J Autism Dev Disord 2024:10.1007/s10803-024-06520-1. [PMID: 39242471 DOI: 10.1007/s10803-024-06520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/09/2024]
Abstract
Evidence suggests different mismatch negativity (MMN) and P3a responses in individuals with autism spectrum disorder (ASD). Since unaffected siblings shared aberrant neurocognition and brain connectivity with ASD probands, this study investigated MMN and P3a responses in unaffected siblings and explored its neurocognitive implications and effects modifiers. We assessed 43 unaffected siblings of ASD probands and 64 non-autistic comparisons (NTC) using MMN and P3a on both frequency and duration oddball paradigms. The amplitude and latency of MMN and P3a were compared between unaffected siblings and NTC, and validated in 67 ASD probands. In addition, the neurocognitive correlates of MMN and P3a parameters were explored in attention performance, spatial working memory (SWM), and visual research via the tasks of the Conners' Continuous Performance Test and the Cambridge Neuropsychological Test Automated Battery. Compared to NTC, unaffected siblings and ASD probands presented a shorter MMN latency. The P3a amplitude of the duration paradigm (dP3a) was correlated with fewer commission errors, fewer SWM total errors, higher detectability, and more correct responses on visual search tasks. In addition, the dP3a amplitude significantly interacted with sibship, age, and full-scale IQ to predict attention performance, SWM total errors, and total correct response on visual search. Findings suggest that unaffected siblings of ASD may have earlier brain responses upon novelty discrimination. P3a amplitude may correlate with better neurocognitive performance, but the effect was moderated by sibship, age, and intelligence.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No.7, Chung-Shan South Road, Taipei, 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No.7, Chung-Shan South Road, Taipei, 10002, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No.7, Chung-Shan South Road, Taipei, 10002, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Chen H, Yang Y, Odisho D, Wu S, Yi C, Oliver BG. Can biomarkers be used to diagnose attention deficit hyperactivity disorder? Front Psychiatry 2023; 14:1026616. [PMID: 36970271 PMCID: PMC10030688 DOI: 10.3389/fpsyt.2023.1026616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) is solely based on behavioral tests prescribed by the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). However, biomarkers can be more objective and accurate for diagnosis and evaluating treatment efficacy. Thus, this review aimed to identify potential biomarkers for ADHD. Search terms “ADHD,” and “biomarker” combined with one of “protein,” “blood/serum,” “gene,” and “neuro” were used to identify human and animal studies in PubMed, Ovid Medline, and Web of Science. Only papers in English were included. Potential biomarkers were categorized into radiographic, molecular, physiologic, or histologic markers. The radiographic analysis can identify specific activity changes in several brain regions in individuals with ADHD. Several molecular biomarkers in peripheral blood cells and some physiologic biomarkers were found in a small number of participants. There were no published histologic biomarkers for ADHD. Overall, most associations between ADHD and potential biomarkers were properly controlled. In conclusion, a series of biomarkers in the literature are promising as objective parameters to more accurately diagnose ADHD, especially in those with comorbidities that prevent the use of DSM-5. However, more research is needed to confirm the reliability of the biomarkers in larger cohort studies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yang Yang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Diana Odisho
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Siqi Wu
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chenju Yi
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
- *Correspondence: Chenju Yi,
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia
| |
Collapse
|
5
|
Pagán AF, Huizar YP, Schmidt AT. Conner's Continuous Performance Test and Adult ADHD: A Systematic Literature Review. J Atten Disord 2023; 27:231-249. [PMID: 36495125 DOI: 10.1177/10870547221142455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE ADHD is a neurodevelopmental disorder affecting millions of adults worldwide. Continuous performance tests (CPTs) are widely used as assessment and diagnostic tools; however, their use in diagnosing undiagnosed ADHD in adults has been questioned due to their lack of specificity and sensitivity. This review sought to outline relevant findings concerning the diagnostic utility of the Conner's Continuous Performance Test (CCPT) in adults. METHOD This systematic review followed the a priori guide outlined by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Articles were gathered from PsycINFO, PsycArticles, Cochrane, Scopus, Google Scholar, and PubMed. RESULTS Thirty-five articles were reviewed and analyzed. Most articles reviewed used outpatient and university populations. Moderate reliability, subpar discriminant and ecological validity, and mixed sensitivity and specificity were noted. CONCLUSION The results of this review lend support to previous critiques of the CCPT's diagnostic and utility as a treatment measure.
Collapse
|