1
|
Durston NE, Mahadik Y, Windsor SP. Quantifying avian inertial properties using calibrated computed tomography. J Exp Biol 2022; 225:jeb242280. [PMID: 34982164 PMCID: PMC8778804 DOI: 10.1242/jeb.242280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
Estimating centre of mass and mass moments of inertia is an important aspect of many studies in biomechanics. Characterising these parameters accurately in three dimensions is challenging with traditional methods requiring dissection or suspension of cadavers. Here, we present a method to quantify the three-dimensional centre of mass and inertia tensor of birds of prey using calibrated computed tomography (CT) scans. The technique was validated using several independent methods, providing body segment mass estimates within approximately 1% of physical dissection measurements and moment of inertia measurements with a 0.993 R2 correlation with conventional trifilar pendulum measurements. Calibrated CT offers a relatively straightforward, non-destructive approach that yields highly detailed mass distribution data that can be used for three-dimensional dynamics modelling in biomechanics. Although demonstrated here with birds, this approach should work equally well with any animal or appendage capable of being CT scanned.
Collapse
Affiliation(s)
| | | | - Shane P. Windsor
- Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK
| |
Collapse
|
2
|
Weiss N, Rosselli M, Mouri S, Galanaud D, Puybasset L, Agarwal B, Thabut D, Jalan R. Modification in CSF specific gravity in acutely decompensated cirrhosis and acute on chronic liver failure independent of encephalopathy, evidences for an early blood-CSF barrier dysfunction in cirrhosis. Metab Brain Dis 2017; 32:369-376. [PMID: 27730496 DOI: 10.1007/s11011-016-9916-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
Although hepatic encephalopathy (HE) on the background of acute on chronic liver failure (ACLF) is associated with high mortality rates, it is unknown whether this is due to increased blood-brain barrier permeability. Specific gravity of cerebrospinal fluid measured by CT is able to estimate blood-cerebrospinal fluid-barrier permeability. This study aimed to assess cerebrospinal fluid specific gravity in acutely decompensated cirrhosis and to compare it in patients with or without ACLF and with or without hepatic encephalopathy. We identified all the patients admitted for acute decompensation of cirrhosis who underwent a brain CT-scan. Those patients could present acute decompensation with or without ACLF. The presence of hepatic encephalopathy was noted. They were compared to a group of stable cirrhotic patients and healthy controls. Quantitative brain CT analysis used the Brainview software that gives the weight, the volume and the specific gravity of each determined brain regions. Results are given as median and interquartile ranges and as relative variation compared to the control/baseline group. 36 patients presented an acute decompensation of cirrhosis. Among them, 25 presented with ACLF and 11 without ACLF; 20 presented with hepatic encephalopathy grade ≥ 2. They were compared to 31 stable cirrhosis patients and 61 healthy controls. Cirrhotic patients had increased cerebrospinal fluid specific gravity (CSF-SG) compared to healthy controls (+0.4 %, p < 0.0001). Cirrhotic patients with ACLF have decreased CSF-SG as compared to cirrhotic patients without ACLF (-0.2 %, p = 0.0030) that remained higher than in healthy controls. The presence of hepatic encephalopathy did not modify CSF-SG (-0.09 %, p = 0.1757). Specific gravity did not differ between different brain regions according to the presence or absence of either ACLF or HE. In patients with acute decompensation of cirrhosis, and those with ACLF, CSF specific gravity is modified compared to both stable cirrhotic patients and healthy controls. This pattern is observed even in the absence of hepatic encephalopathy suggesting that blood-CSF barrier impairment is manifest even in absence of overt hepatic encephalopathy.
Collapse
Affiliation(s)
- Nicolas Weiss
- Brain-Liver Pitié-Salpêtrière Study Group (BLIPS), Hôpital de la Pitié Salpétrière, and INSERM UMR_S 938, CDR Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France.
- Unité de réanimation neurologique, Fédération de Neurologie, Pôle des maladies du système nerveux, Hôpital de la Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.
- Institut de Neurosciences Translationnelles de Paris, Institut-Hospitalo-Universitaire-A-Institut du Cerveau et de la Moelle (IHU-A-ICM), Paris, France.
| | - Matteo Rosselli
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| | - Sarah Mouri
- Brain-Liver Pitié-Salpêtrière Study Group (BLIPS), Hôpital de la Pitié Salpétrière, and INSERM UMR_S 938, CDR Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
- Soins Intensifs d'Hépatologie, Service d'Hépato-Gastroentérologie, Hôpital de la Pitié Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Damien Galanaud
- Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Louis Puybasset
- Neuro-réanimation chirurgicale, département d'anesthésie-réanimation, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, France and Université Pierre et Marie Curie, Paris, France
| | - Banwari Agarwal
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| | - Dominique Thabut
- Brain-Liver Pitié-Salpêtrière Study Group (BLIPS), Hôpital de la Pitié Salpétrière, and INSERM UMR_S 938, CDR Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
- Soins Intensifs d'Hépatologie, Service d'Hépato-Gastroentérologie, Hôpital de la Pitié Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rajiv Jalan
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| |
Collapse
|
4
|
Volz TJ, Farnsworth SJ, Hanson GR, Fleckenstein AE. Method development and validation of an in vitro model of the effects of methylphenidate on membrane-associated synaptic vesicles. J Neurosci Methods 2009; 177:177-82. [PMID: 18992277 PMCID: PMC2768605 DOI: 10.1016/j.jneumeth.2008.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/03/2008] [Accepted: 10/07/2008] [Indexed: 11/18/2022]
Abstract
In vivo methylphenidate (MPD) administration decreases vesicular monoamine transporter-2 (VMAT-2) immunoreactivity in membrane-associated vesicles isolated from the striata of treated rats while concurrently kinetically upregulating VMAT-2-mediated vesicular dopamine (DA) sequestration. The functional consequences of these MPD-induced effects include an increase in both vesicular DA content and exocytotic DA release. This report describes experiments designed to develop and validate an in vitro MPD model to further elucidate the molecular mechanism(s) underlying the effects of MPD on the VMAT-2 in membrane-associated vesicles. Method development experiments revealed that in vitro MPD incubation of striatal homogenates, but not striatal synaptosomes, increased DA transport velocities and decreased VMAT-2 immunoreactivity in membrane-associated vesicles. An incubation time of 30min with a MPD concentration of 10mM was optimal. Method validation experiments indicated that in vitro MPD incubation kinetically upregulated VMAT-2 in membrane-associated vesicles, increased vesicular DA content, and increased exocytotic DA release. These results reveal that the in vitro MPD incubation model successfully reproduced the salient features of in vivo MPD administration. This in vitro MPD incubation model may provide novel insights into the receptor-mediated mechanism(s) of action of in vivo MPD in the striatum as well as the physiological regulation of vesicular DA sequestration and synaptic transmission. Accordingly, this in vitro model may help to advance the treatment of disorders involving abnormal DA disposition including Parkinson's disease, attention-deficit hyperactivity disorder, and substance abuse.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Room 201, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|