1
|
Hanci F, Türay S, Balci P, Kabakuş N. Reflex Epilepsy with Hot Water: Clinical and EEG Findings, Treatment, and Prognosis in Childhood. Neuropediatrics 2020; 51:336-340. [PMID: 32294767 DOI: 10.1055/s-0040-1709455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hot water epilepsy (HWE) is a subtype of reflex epilepsy in which seizures are triggered by the head being immersed in hot water. Hot water or bathing epilepsy is the type of reflex epilepsy most frequently encountered in our clinic. We describe our patients with HWE and also discuss the clinical features, therapeutic approaches, and prognosis. Eleven patients (10 boys, 1 girl), aged 12 months to 13 years, admitted to the pediatric neurology clinic between January 2018 and August 2019, and diagnosed with HWE or bathing epilepsy based on International League Against Epilepsy (ILAE)-2017, were followed up prospectively for ∼18 months. Patients' clinical and electroencephalography (EEG) findings and treatment details were noted. All 11 patients' seizures were triggered by hot water. Age at first seizure was between 2 months and 12 years. Seizure types were generalized motor seizures, absence, and atonic. EEG was normal in two patients, but nine patients had epileptiform discharges. Magnetic resonance imaging of the brain was performed and reported as normal (except in one case). Histories of prematurity were present in two patients, unprovoked seizures in one, and low birth weight and depressed birth in the other. Patients with HWE have normal neuromuscular development and neurological examination results, together with prophylaxis or seizure control with a single antiepileptic drug, suggesting that it is a self-limited reflex epilepsy.
Collapse
Affiliation(s)
- Fatma Hanci
- Division of Child Neurology, Department of Pediatrics, Abant İzzet Baysal University, Bolu, Turkey
| | - Sevim Türay
- Division of Child Neurology, Department of Pediatrics, Düzce University, Düzce, Turkey
| | - Paşa Balci
- Department of Pediatrics, Abant İzzet Baysal University, Bolu, Turkey
| | - Nimet Kabakuş
- Division of Child Neurology, Department of Pediatrics, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
2
|
Italiano D, Striano P, Russo E, Leo A, Spina E, Zara F, Striano S, Gambardella A, Labate A, Gasparini S, Lamberti M, De Sarro G, Aguglia U, Ferlazzo E. Genetics of reflex seizures and epilepsies in humans and animals. Epilepsy Res 2016; 121:47-54. [PMID: 26875109 DOI: 10.1016/j.eplepsyres.2016.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Reflex seizures are epileptic events triggered by specific motor, sensory or cognitive stimulation. This comprehensive narrative review focuses on the role of genetic determinants in humans and animal models of reflex seizures and epilepsies. METHODS References were mainly identified through MEDLINE searches until August 2015 and backtracking of references in pertinent studies. RESULTS Autosomal dominant inheritance with reduced penetrance was proven in several families with photosensitivity. Molecular genetic studies on EEG photoparoxysmal response identified putative loci on chromosomes 6, 7, 13 and 16 that seem to correlate with peculiar seizure phenotype. No specific mutation has been found in Papio papio baboon, although a genetic etiology is likely. Mutation in synaptic vesicle glycoprotein 2A was found in another animal model of photosensitivity (Fayoumi chickens). Autosomal dominant inheritance with incomplete penetrance overlapping with a genetic background for IGE was proposed for some families with primary reading epilepsy. Musicogenic seizures usually occur in patients with focal symptomatic or cryptogenic epilepsies, but they have been reported in rare genetic epilepsies such as Dravet syndrome. A single LGI1 mutation has been described in a girl with seizures evoked by auditory stimuli. Interestingly, heterozygous knockout (Lgi1(+/-)) mice show susceptibility to sound-triggered seizures. Moreover, in Frings and Black Swiss mice, the spontaneous mutations of MASS1 and JAMS1 genes, respectively, have been linked to audiogenic seizures. Eating seizures usually occur in symptomatic epilepsies but evidences for a genetic susceptibility were mainly provided by family report from Sri Lanka. Eating seizures were also reported in rare patients with MECP2 duplication or mutation. Hot water seizures are genetically heterogeneous but two loci at chromosomes 4 and 10 were identified in families with likely autosomal dominant inheritance. Startle-induced seizures usually occur in patients with symptomatic epilepsies but have also been reported in the setting chromosomal disorders or genetically inherited lysosomal storage diseases. DISCUSSION The genetic background of reflex seizures and epilepsies is heterogeneous and mostly unknown with no major gene identified in humans. The benefits offered by next-generation sequencing technologies should be merged with increasing information on animal models that represent an useful tool to study the mechanism underlying epileptogenesis. Finally, we expect that genetic studies will lead to a better understanding of the multiple factors involved in the pathophysiology of reflex seizures, and eventually to develop preventive strategies focused on seizure control and therapy optimization.
Collapse
Affiliation(s)
- Domenico Italiano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, School of Medicine, University of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neurosciences, Department of Neurosciences, "G. Gaslini" Institute, Genova, Italy
| | - Salvatore Striano
- Epilepsy Center, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Viale Europa, Catanzaro, Italy; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Viale Europa, Catanzaro, Italy
| | - Angelo Labate
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Viale Europa, Catanzaro, Italy; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Viale Europa, Catanzaro, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Viale Europa, Catanzaro, Italy; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Marco Lamberti
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Viale Europa, Catanzaro, Italy; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Viale Europa, Catanzaro, Italy; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy.
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Viale Europa, Catanzaro, Italy; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Viale Europa, Catanzaro, Italy; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| |
Collapse
|
3
|
Anderson WS, Azhar F, Kudela P, Bergey GK, Franaszczuk PJ. Epileptic seizures from abnormal networks: why some seizures defy predictability. Epilepsy Res 2011; 99:202-13. [PMID: 22169211 DOI: 10.1016/j.eplepsyres.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/19/2011] [Accepted: 11/18/2011] [Indexed: 11/17/2022]
Abstract
Seizure prediction has proven to be difficult in clinically realistic environments. Is it possible that fluctuations in cortical firing could influence the onset of seizures in an ictal zone? To test this, we have now used neural network simulations in a computational model of cortex having a total of 65,536 neurons with intercellular wiring patterned after histological data. A spatially distributed Poisson driven background input representing the activity of neighboring cortex affected 1% of the neurons. Gamma distributions were fit to the interbursting phase intervals, a non-parametric test for randomness was applied, and a dynamical systems analysis was performed to search for period-1 orbits in the intervals. The non-parametric analysis suggests that intervals are being drawn at random from their underlying joint distribution and the dynamical systems analysis is consistent with a nondeterministic dynamical interpretation of the generation of bursting phases. These results imply that in a region of cortex with abnormal connectivity analogous to a seizure focus, it is possible to initiate seizure activity with fluctuations of input from the surrounding cortical regions. These findings suggest one possibility for ictal generation from abnormal focal epileptic networks. This mechanism additionally could help explain the difficulty in predicting partial seizures in some patients.
Collapse
Affiliation(s)
- William S Anderson
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|