1
|
Abstract
ABSTRACT Gliomas and glioblastoma comprise the majority of brain malignancies and are difficult to treat despite standard of care and advances in immunotherapy. The challenges of controlling glioma growth and recurrence involve the uniquely immunosuppressive tumor microenvironment and systemic blunting of immune responses. In addition to highlighting key features of glioma and glioblastoma composition and immunogenicity, this review presents several future directions for immunotherapy, such as vaccines and synergistic combination treatment regimens, to better combat these tumors.
Collapse
|
2
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
3
|
Majchrzak-Celińska A, Zielińska-Przyjemska M, Wierzchowski M, Kleszcz R, Studzińska-Sroka E, Kaczmarek M, Paluszczak J, Cielecka-Piontek J, Krajka-Kuźniak V. Methoxy-stilbenes downregulate the transcription of Wnt/β-catenin-dependent genes and lead to cell cycle arrest and apoptosis in human T98G glioblastoma cells. Adv Med Sci 2021; 66:6-20. [PMID: 33238230 DOI: 10.1016/j.advms.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Glioblastoma is the most common and the deadliest brain cancer. The aim of this study was to analyze the impact of resveratrol and its five analogs: 3,4,4'-trimethoxy, 3,4,2'-trimethoxy, 3,4,2',4'-tetramethoxy, 3,4,2',6'-tetramethoxy and 3,4,2',4',6'-pentamethoxy-trans-stilbenes (MS) on human glioblastoma T98G cells. MATERIALS AND METHODS The Parallel Artificial Membrane Permeation Assay (PAMPA) was used for the prediction of blood-brain barrier penetration ability of the tested stilbenes (PAMPA-BBB). MTT test was applied to analyze the cytotoxicity of the compounds, whereas their ability to inhibit Wnt/β-catenin target genes expression was verified using qPCR. The potential DNA demethylating properties of the analyzed compounds were tested by Methylation-Sensitive High Resolution Melting (MS-HRM). Cell cycle distribution was tested using Fluorescence-Activated Cell Sorting (FACS), whereas apoptosis was analyzed using FITC Annexin V/propidium iodide double staining assay and Western blot. RESULTS High blood-brain barrier permeability coefficient was obtained for both resveratrol as well as methoxy-stilbenes. Their ability to downregulate the expression of Wnt/β-catenin pathway-related genes was confirmed. The 4'-methoxy substituted derivatives showed higher activity, whereas 3,4,4'-tri-MS was the most potent Wnt/β-catenin pathway inhibitor. None of the compounds affected DNA methylation level of MGMT, SFRP1, or RUNX3, despite inducing moderate changes in the level of expression of epigenetic modifiers DNMT3B and TET1-3. Importantly, treatment with 3,4,4'-tri-MS and 3,4,2',4'-tetra-MS led to cycle arrest in the S phase and induced apoptosis. CONCLUSIONS Both, resveratrol, as well as its synthetic methoxy-derivatives, should be further studied as promising adjuvants in glioblastoma treatment.
Collapse
|
4
|
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, Norenberg M, Rodríguez FJ. Frizzled 1 and Wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci 2020; 77:4631-4662. [PMID: 31900623 PMCID: PMC11104978 DOI: 10.1007/s00018-019-03427-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Despite the experimental evidence pointing to a significant role of the Wnt family of proteins in physiological and pathological rodent spinal cord functioning, its potential relevance in the healthy and traumatically injured human spinal cord as well as its therapeutic potential in spinal cord injury (SCI) are still poorly understood. To get further insight into these interesting issues, we first demonstrated by quantitative Real-Time PCR and simple immunohistochemistry that detectable mRNA expression of most Wnt components, as well as protein expression of all known Wnt receptors, can be found in the healthy human spinal cord, supporting its potential involvement in human spinal cord physiology. Moreover, evaluation of Frizzled (Fz) 1 expression by double immunohistochemistry showed that its spatio-temporal and cellular expression pattern in the traumatically injured human spinal cord is equivalent to that observed in a clinically relevant model of rat SCI and suggests its potential involvement in SCI progression/outcome. Accordingly, we found that long-term lentiviral-mediated overexpression of the Fz1 ligand Wnt1 after rat SCI improves motor functional recovery, increases myelin preservation and neuronal survival, and reduces early astroglial reactivity and NG2+ cell accumulation, highlighting the therapeutic potential of Wnt1 in this neuropathological situation.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de La Salud, Toledo, Spain
| | | | - Alexander Marcillo
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | - Michael Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | | |
Collapse
|
5
|
He L, Zhou H, Zeng Z, Yao H, Jiang W, Qu H. Wnt/β‐catenin signaling cascade: A promising target for glioma therapy. J Cell Physiol 2018; 234:2217-2228. [PMID: 30277583 DOI: 10.1002/jcp.27186] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lu He
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hong Zhou
- Department of RadiologyFirst Affiliated Hospital, University of South ChinaHengyang China
- Learning Key Laboratory for PharmacoproteomicsInstitute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South ChinaHengyang China
| | - Zhiqing Zeng
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hailun Yao
- Department of Medical College, Hunan Polytechnic of Environment and BiologyHengyang China
| | - Weiping Jiang
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hongtao Qu
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| |
Collapse
|
6
|
Cui X, Sun D, Shen B, Wang X. MEG-3-mediated Wnt/β-catenin signaling pathway controls the inhibition of tunicamycin-mediated viability in glioblastoma. Oncol Lett 2018; 16:2797-2804. [PMID: 30127865 PMCID: PMC6096123 DOI: 10.3892/ol.2018.9048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/03/2018] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common primary brain carcinoma and leads to a poor survival rate of patients worldwide. Results of previous studies have suggested that tunicamycin may inhibit aggressiveness by promoting apoptosis of glioblastoma cells. In the present study, the effects of tunicamycin and its potential molecular mechanisms underlying the viability and aggressiveness of glioblastoma cells were investigated. Western blot analysis, the reverse transcription-quantitative polymerase chain reaction, immunohistochemistry, apoptosis assays and immunofluorescence were employed to examine the effects of tunicamycin on apoptosis, viability, aggressiveness and cell cycle arrest of glioblastoma cells by downregulation of the expression levels of fibronectin and epithelial cadherin. In vitro experiments demonstrated that tunicamycin significantly inhibited the viability, migration and invasion of glioblastoma cells. Results demonstrated that tunicamycin administration promoted apoptosis of glioblastoma cells through the upregulation of poly(ADP-ribose) polymerase and caspase-9. Cell cycle assays revealed that tunicamycin suppressed the proliferation of, and induced cell cycle arrest at S phase in, glioblastoma cells. Additionally, tunicamycin increased the expression of maternally expressed gene-3 (MEG-3) and wingless/integrated (Wnt)/β-catenin in glioblastoma cells. Results also indicated that tunicamycin administration promoted the Wnt/β-catenin signaling pathway in glioblastoma cells. Knockdown of MEG-3 inhibited tunicamycin-mediated downregulation of the Wnt/β-catenin signaling pathway, which was inhibited further by tunicamycin-mediated inhibition of viability and aggressiveness in glioblastoma. In vivo assays demonstrated that tunicamycin treatment significantly inhibited tumor viability and promoted apoptosis, which further led to an increased survival rate of tumor-bearing mice compared with that of the control group. In conclusion, these results indicate that tunicamycin may inhibit the viability and aggressiveness by regulating MEG-3-mediated Wnt/β-catenin signaling, suggesting that tunicamycin may be a potential anticancer agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Xiangyu Cui
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| | - Dezhou Sun
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| | - Bin Shen
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| | - Xin Wang
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| |
Collapse
|
7
|
Gao L, Zhang LJ, Li SH, Wei LL, Luo B, He RQ, Xia S. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis. Pathol Res Pract 2018; 214:732-749. [DOI: 10.1016/j.prp.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
|
8
|
Li X, Xue L, Peng Q. Tunicamycin inhibits progression of glioma cells through downregulation of the MEG-3-regulated wnt/β-catenin signaling pathway. Oncol Lett 2018; 15:8470-8476. [PMID: 29805584 PMCID: PMC5950543 DOI: 10.3892/ol.2018.8416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Glioma is derived from the oncogenic transformation of brain and spinal cord glial cells, and is one of the most common primary brain tumors. Tunicamycin (TUN) can significantly inhibit glioma growth and aggressiveness by promoting apoptosis in glioma cells. The purpose of the present study was to investigate the effects of TUN on growth of glioma cells and examine the TUN-mediated signaling pathway. The inhibitory effects of TUN on apoptosis, growth, aggressiveness and cell cycle arrest of glioma tumor cells were determined by western blotting, reverse transcription-quantitative polymerase chain reaction, apoptotic assays and immunofluorescence. The results demonstrated that treatment with TUN suppressed growth, migration and invasion of glioma carcinoma cells. In addition, TUN treatment induced apoptosis of glioma cells through downregulation of Bcl-2 and P53 expression levels. Findings also indicated that TUN suppressed proliferation and arrested the glioma cells in the S phase of the cell cycle. Further analysis of the mechanisms of TUN demonstrated that TUN treatment upregulated the expression levels of maternally expressed gene (MEG)-3, wnt and β-catenin in glioma cells. Furthermore, knockdown of MEG-3 expression reversed the TUN-decreased wnt/β-catenin signaling pathway, which subsequently also reversed the TUN-inhibited growth and aggressiveness of glioma cells. In conclusion, the findings in the present study indicated that TUN treatment inhibited growth and aggressiveness through MEG-3-mediated wnt/β-catenin signaling, suggesting that TUN may be an efficient anticancer agent for the treatment of glioma.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurosurgery, Jinshazhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Lei Xue
- Clinical Skills Training Center, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Qin Peng
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
9
|
Meel MH, Schaper SA, Kaspers GJL, Hulleman E. Signaling pathways and mesenchymal transition in pediatric high-grade glioma. Cell Mol Life Sci 2018; 75:871-887. [PMID: 29164272 PMCID: PMC5809527 DOI: 10.1007/s00018-017-2714-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal types of cancer in children. In recent years, it has become evident that these tumors are driven by epigenetic events, mainly mutations involving genes encoding Histone 3, setting them apart from their adult counterparts. These tumors are exceptionally resistant to chemotherapy and respond only temporarily to radiotherapy. Moreover, their delicate location and diffuse growth pattern make complete surgical resection impossible. In many other forms of cancer, chemo- and radioresistance, in combination with a diffuse, invasive phenotype, are associated with a transcriptional program termed the epithelial-to-mesenchymal transition (EMT). Activation of this program allows cancer cells to survive individually, invade surrounding tissues and metastasize. It also enables them to survive exposure to cytotoxic therapy, including chemotherapeutic drugs and radiation. We here suggest that EMT plays an important, yet poorly understood role in the biology and therapy resistance of pHGG and DIPG. This review summarizes the current knowledge on the major signal transduction pathways and transcription factors involved in the epithelial-to-mesenchymal transition in cancer in general and in pediatric HGG and DIPG in particular. Despite the fact that the mesenchymal transition has not yet been specifically studied in pHGG and DIPG, activation of pathways and high levels of transcription factors involved in EMT have been described. We conclude that the mesenchymal transition is likely to be an important element of the biology of pHGG and DIPG and warrants further investigation for the development of novel therapeutics.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Sophie A Schaper
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Chiu YC, Wang LJ, Hsiao TH, Chuang EY, Chen Y. Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer. BMC Genomics 2017; 18:679. [PMID: 28984209 PMCID: PMC5629553 DOI: 10.1186/s12864-017-4028-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking. Results We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions. Conclusions Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.
Collapse
Affiliation(s)
- Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Li-Ju Wang
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. .,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA. .,Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Kast RE, Skuli N, Karpel-Massler G, Frosina G, Ryken T, Halatsch ME. Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen. Oncotarget 2017; 8:60727-60749. [PMID: 28977822 PMCID: PMC5617382 DOI: 10.18632/oncotarget.18337] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
This paper outlines a treatment protocol to run alongside of standard current treatment of glioblastoma- resection, temozolomide and radiation. The epithelial to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively motile, therapy-resisting, low proliferation, transient state that is an integral feature of cancers’ lethality generally and of glioblastoma specifically. It is believed to be during the EMT state that glioblastoma’s centrifugal migration occurs. EMT is also a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- all by their previously established ancillary attributes. All these systems have been identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs have a good safety profile when used individually. They are not expected to have any new side effects when combined. Further studies of the EIS Regimen are needed.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse, CRCT, Inserm/Université Toulouse III, Paul Sabatier, Hubert Curien, Toulouse, France
| | - Georg Karpel-Massler
- Department of Neurosurgery, Ulm University Hospital, Albert-Einstein-Allee, Ulm, Germany
| | - Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, Genoa, Italy
| | - Timothy Ryken
- Department of Neurosurgery, University of Kansas, Lawrence, KS, USA
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Ulm University Hospital, Albert-Einstein-Allee, Ulm, Germany
| |
Collapse
|
12
|
Xing Z, Ni Y, Zhao J, Ma X. Hydrogen Peroxide-Induced Secreted Frizzled-Related Protein 1 Gene Demethylation Contributes to Hydrogen Peroxide-Induced Apoptosis in Human U251 Glioma Cells. DNA Cell Biol 2017; 36:347-353. [PMID: 28398872 DOI: 10.1089/dna.2016.3594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zhiguo Xing
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yaping Ni
- Department of General Medicine and Geriatrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Junjie Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Suwala AK, Hanaford A, Kahlert UD, Maciaczyk J. Clipping the Wings of Glioblastoma: Modulation of WNT as a Novel Therapeutic Strategy. J Neuropathol Exp Neurol 2016; 75:388-96. [PMID: 26979081 DOI: 10.1093/jnen/nlw013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and has a dismal prognosis. Aberrant WNT signaling is known to promote glioma cell growth and dissemination and resistance to conventional radio- and chemotherapy. Moreover, a population of cancer stem-like cells that promote glioma growth and recurrence are strongly dependent on WNT signaling. Here, we discuss the role and mechanisms of aberrant canonical and noncanonical WNT signaling in GBM. We present current clinical approaches aimed at modulating WNT activity and evaluate their clinical perspective as a novel treatment option for GBM.
Collapse
Affiliation(s)
- Abigail K Suwala
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Allison Hanaford
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Ulf D Kahlert
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Jaroslaw Maciaczyk
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH).
| |
Collapse
|
14
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [PMID: 26549540 DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Chang L, Lei X, Qin YU, Zeng G, Zhang X, Jin H, Wang C, Wang X, Su J. Expression and prognostic value of SFRP1 and β-catenin in patients with glioblastoma. Oncol Lett 2015; 11:69-74. [PMID: 26870169 PMCID: PMC4727037 DOI: 10.3892/ol.2015.3873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 09/04/2015] [Indexed: 01/11/2023] Open
Abstract
The roles of secreted frizzled-related protein-1 (SFRP1) and β-catenin in human cancer have been widely studied, and it has recently been demonstrated that these proteins are associated with numerous human carcinomas. However, their clinical significance in glioblastoma multiforme (GBM) has not been examined. The current study aimed to analyze the correlation between the expression of SFRP1 and β-catenin, and clinicopathological characteristics in GBM patients. The expression of SFRP1 and β-catenin was assessed by immunohistochemistry in 113 samples of GBM and 40 normal brain tissues. Compared with normal brain tissues, GBM tissues exhibited significantly lower expression of SFRP1, and higher expression of β-catenin (both P<0.05). A Kaplan-Meier analysis revealed that patients with positive SFRP1 expression had a significantly longer overall survival (OS) time relative to those with negative SFRP1 expression (P<0.000), and that patients with positive β-catenin expression had a shorter OS time than those with negative β-catenin expression (P<0.000). A multivariate Cox regression analysis indicated that adjuvant treatment, SFRP1 expression and β-catenin expression were independent prognostic factors for OS (P<0.000, P=0.008 and P=0.001, respectively) in patients with GBM. The current data suggest that expression of SFRP1 and β-catenin may be considered significant prognostic indicators for patients with GBM.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xuhui Lei
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Y U Qin
- Department of Pathology, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guangchun Zeng
- Department of Pathology, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xuexin Zhang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hua Jin
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chao Wang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Wang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jun Su
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
16
|
Shi Q, Song X, Wang J, Gu J, Zhang W, Hu J, Zhou X, Yu R. FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation. J Mol Neurosci 2014; 55:32-41. [PMID: 24969324 DOI: 10.1007/s12031-014-0355-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/11/2014] [Indexed: 01/10/2023]
Abstract
Fyn-related kinase (FRK), a member of Src-related tyrosine kinases, is recently reported to function as a potent tumor suppressor in several cancer types. Our previous study has also shown that FRK over-expression inhibited the migration and invasion of glioma cells. However, the mechanism of FRK effect on glioma cell migration and invasion, a feature of human malignant gliomas, is still not clear. In this study, we found that FRK over-expression increased the protein level of N-cadherin, but not E-cadherin. Meanwhile, FRK over-expression promoted β-catenin translocation to the plasma membrane, where it formed complex with N-cadherin, while decreased β-catenin level in the nuclear fraction. In addition, down-regulation of N-cadherin by siRNA promoted the migration and invasion of glioma U251 and U87 cells and abolished the inhibitory effect of FRK on glioma cell migration and invasion. In summary, these results indicate that FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.
Collapse
Affiliation(s)
- Qiong Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xu Song
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jun Wang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jia Gu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Weijian Zhang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jinxia Hu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xiuping Zhou
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Rutong Yu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Zhao L, Ma S, Liu Q, Liang P. Clinical implications of Girdin protein expression in glioma. ScientificWorldJournal 2013; 2013:986073. [PMID: 24288520 PMCID: PMC3826315 DOI: 10.1155/2013/986073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the expression status of Girdin in glioma and the relationship between Girdin expression and the biological behavior of glioma. MATERIALS AND METHODS The expression status of Girdin in glioma from 560 cases was evaluated by RT-PCR, Western Blot and immunohistochemistry. The relationship between Girdin expression and clinic-pathological parameters as well as prognosis was also studied. RESULTS The expression of Girdin in high grade glioma was significantly higher than low grade glioma. After universal analysis, the expression of Girdin protein is closely related to KPS score, extent of resection, Ki67 and WHO grade, but it was not related to sex and age. Finally, extent of resection, Ki67 and WHO grade were indentified to be related to the Girdin protein expression in logistic regression. Interestingly, we found that the expression of Girdin is significantly related to the distant metastasis of glioma. After COX regression analysis, KPS score, Extent of resection, Ki67, WHO grade as well as Girdin were observed to be independent prognostic factors. CONCLUSIONS Girdin is differential expressed in the glioma patients and closely related to the biological behavior of Glioma. Finally, Girdin was found to be a strong predictor for the post-operative prognosis.
Collapse
Affiliation(s)
- Liwei Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Shuyin Ma
- Department of Rehabilitation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qing Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, China
| | - Peng Liang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, China
| |
Collapse
|