1
|
Yu JL, Jiang LL, Dong R, Liu SY. Intracranial infection and sepsis in infants caused by Salmonella derby: A case report. World J Clin Cases 2023; 11:6961-6966. [PMID: 37901018 PMCID: PMC10600864 DOI: 10.12998/wjcc.v11.i28.6961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Salmonella derby (S. derby) is a Gram-negative diplococcus that is common in the digestive tract. Infected patients generally experience symptoms such as fever and diarrhea. Mild cases are mostly self-healing gastroenteritis, and severe cases can cause fatal typhoid fever. Clinical cases are more common in children. The most common form of S. derby infection is self-healing gastroenteritis, in which, fever lasts for about 2 d and diarrhea for < 7 d. S. derby can often cause bacterial conjunctivitis, pneumonia, endocarditis, peritonitis and urethritis. However, intracranial infections in infants caused by S. derby are rare in clinical practice and have not been reported before in China. CASE SUMMARY A 4-mo-old female infant had recurrent fever for 2 wk, with a maximum body temperature of around 39.4°C. Treatment for infectious fever in a local hospital was ineffective, and she was admitted to our hospital. Before admission, there was one sudden convulsion, characterized by unclear consciousness, limb twitching, gaze in both eyes, and slight cyanosis on the face. Cerebrospinal fluid (CSF) culture was positive for Gram-negative bacilli, which conformed to S. derby. After treatment with meropenem and ceftriaxone antibiotics, the patient was discharged home in a clinically stable state after 4 wk of treatment. CONCLUSION We reported a rare case of S. derby cultured in CSF. S. derby enters the CSF through the blood-brain barrier, causing purulent meningitis. If not treated timeously, it can lead to serious, life-threatening infection.
Collapse
Affiliation(s)
- Jing-Lu Yu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Li-Li Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Rong Dong
- Department of Neonatology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Si-Yu Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
2
|
Mohammed M, Casjens SR, Millard AD, Harrison C, Gannon L, Chattaway MA. Genomic analysis of Anderson typing phages of Salmonella Typhimrium: towards understanding the basis of bacteria-phage interaction. Sci Rep 2023; 13:10484. [PMID: 37380724 PMCID: PMC10307801 DOI: 10.1038/s41598-023-37307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The Anderson phage typing scheme has been successfully used worldwide for epidemiological surveillance of Salmonella enterica serovar Typhimurium. Although the scheme is being replaced by whole genome sequence subtyping methods, it can provide a valuable model system for study of phage-host interaction. The phage typing scheme distinguishes more than 300 definitive types of Salmonella Typhimurium based on their patterns of lysis to a unique collection of 30 specific Salmonella phages. In this study, we sequenced the genomes of 28 Anderson typing phages of Salmonella Typhimurium to begin to characterize the genetic determinants that are responsible for the differences in these phage type profiles. Genomic analysis of typing phages reveals that Anderson phages can be classified into three different groups, the P22-like, ES18-like and SETP3-like clusters. Most Anderson phages are short tailed P22-like viruses (genus Lederbergvirus); but phages STMP8 and STMP18 are very closely related to the lambdoid long tailed phage ES18, and phages STMP12 and STMP13 are related to the long noncontractile tailed, virulent phage SETP3. Most of these typing phages have complex genome relationships, but interestingly, two phage pairs STMP5 and STMP16 as well as STMP12 and STMP13 differ by a single nucleotide. The former affects a P22-like protein involved in DNA passage through the periplasm during its injection, and the latter affects a gene whose function is unknown. Using the Anderson phage typing scheme would provide insights into phage biology and the development of phage therapy for the treatment of antibiotic resistant bacterial infections.
Collapse
Affiliation(s)
- Manal Mohammed
- Genomics and Infectious Diseases Research Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Christian Harrison
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Lucy Gannon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | |
Collapse
|
3
|
Linde J, Szabo I, Tausch SH, Deneke C, Methner U. Clonal relation between Salmonella enterica subspecies enterica serovar Dublin strains of bovine and food origin in Germany. Front Vet Sci 2023; 10:1081611. [PMID: 37303731 PMCID: PMC10248260 DOI: 10.3389/fvets.2023.1081611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Dublin (S. Dublin) is a host-adapted serovar causing enteritis and/or systemic diseases in cattle. As the serovar is not host-restricted, it may cause infections in other animals, including humans with severe illness and higher mortality rates than other non-typhoidal serovars. As human infections are mainly caused by contaminated milk, milk products and beef, information on the genetic relationship of S. Dublin strains from cattle and food should be evaluated. Whole-genome sequencing (WGS) of 144 S. Dublin strains from cattle and 30 strains from food origin was performed. Multilocus sequence typing (MLST) revealed mostly sequence type ST-10 from both, cattle and food isolates. In total, 14 of 30 strains from food origin were clonally related to at least one strain from cattle, as detected by core-genome single nucleotide polymorphisms typing as well as core-genome MLST. The remaining 16 foodborne strains fit into the genome structure of S. Dublin in Germany without outliers. WGS proved to be a powerful tool not only to gain information on the epidemiology of Salmonella strains but also to detect clonal relations between organisms isolated from different stages of production. This study has shown a high genetic correlation between S. Dublin strains from cattle and food and, therefore, the potential to cause human infections. S. Dublin strains of both origins share an almost identical set of virulence factors, emphasizing their potential to cause severe clinical manifestations in animals, but also in humans and thus the need for effective control of S. Dublin in a farm-to-fork strategy.
Collapse
Affiliation(s)
- Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
4
|
De Sousa Violante M, Podeur G, Michel V, Guillier L, Radomski N, Lailler R, Le Hello S, Weill FX, Mistou MY, Mallet L. A retrospective and regional approach assessing the genomic diversity of Salmonella Dublin. NAR Genom Bioinform 2022; 4:lqac047. [PMID: 35821882 PMCID: PMC9270687 DOI: 10.1093/nargab/lqac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
From a historically rare serotype, Salmonella enterica subsp. enterica Dublin slowly became one of the most prevalent Salmonella in cattle and raw milk cheese in some regions of France. We present a retrospective genomic analysis of 480 S. Dublin isolates to address the context, evolutionary dynamics, local diversity and the genesis processes of regional S. Dublin outbreaks events between 2015 and 2017. Samples were clustered and assessed for correlation against metadata including isolation date, isolation matrices, geographical origin and epidemiological hypotheses. Significant findings can be drawn from this work. We found that the geographical distance was a major factor explaining genetic groups in the early stages of the cheese production processes (animals, farms) while down-the-line transformation steps were more likely to host genomic diversity. This supports the hypothesis of a generalised local persistence of strains from animal to finished products, with occasional migration. We also observed that the bacterial surveillance is representative of diversity, while targeted investigations without genomics evidence often included unrelated isolates. Combining both approaches in phylogeography methods allows a better representation of the dynamics, of outbreaks.
Collapse
Affiliation(s)
- Madeleine De Sousa Violante
- Actalia, 419 route des champs laitiers , CS 50030, 74801 La Roche sur Foron, France
- INRAE, MaIAGE, Université Paris-Saclay , F-78352 Jouy-en-Josas, France
| | - Gaëtan Podeur
- Actalia, 419 route des champs laitiers , CS 50030, 74801 La Roche sur Foron, France
| | - Valérie Michel
- Actalia, 419 route des champs laitiers , CS 50030, 74801 La Roche sur Foron, France
| | - Laurent Guillier
- ANSES, 14 Rue Pierre et Marie Curie , 94700 Maisons-Alfort, France
| | - Nicolas Radomski
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘Giuseppe Caporale’ (IZSAM) , via Campo Boario, 64100 Teramo, TE, Italy
| | - Renaud Lailler
- ANSES, 14 Rue Pierre et Marie Curie , 94700 Maisons-Alfort, France
| | - Simon Le Hello
- UNICAEN, Groupe de Recherche sur l’Adaptation Microbienne, GRAM 2.0, EA2656, University of Caen Normandy , Caen, France
| | - François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella , Paris, France
| | | | - Ludovic Mallet
- Institut Claudius Regaud , 1 avenue Irène Joliot-Curie, 31059 Toulouse Cedex 9, France
| |
Collapse
|
5
|
Campioni F, Vilela FP, Cao G, Kastanis G, Dos Prazeres Rodrigues D, Costa RG, Tiba-Casas MR, Yin L, Allard M, Falcão JP. Whole genome sequencing analyses revealed that Salmonella enterica serovar Dublin strains from Brazil belonged to two predominant clades. Sci Rep 2022; 12:10555. [PMID: 35732677 PMCID: PMC9217926 DOI: 10.1038/s41598-022-14492-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Salmonella Dublin is a cattle-associated serovar sporadically causing disease in humans. S. Dublin strains isolated in Brazil and in other countries were analyzed to determine their phylogenetic relationships, the presence of genes, plasmids, genomic regions related to virulence and antimicrobial resistance genes repertoire, using WGS analyses. Illumina was used to sequence the genome of 112 S. Dublin strains isolated in Brazil from humans (n = 82) and animals (n = 30) between 1983 and 2016. Furthermore, 87 strains from other countries were analyzed. WGSNP analysis revealed three different clades, in which the strains from Brazil belonged to two clades, A and C. Most of the genes and genomic regions searched varied among the strains studied. The siderophore genes iroB and iroC were exclusively found in strains from Brazil and pegD gene, related to fimbrial adherence determinants, were positive in 124 strains from clades A and B but absent in all the strains from clade C (n = 71). Eleven plasmid replicons were found in the strains from Brazil, and nine were exclusively found in strains from other countries. The antimicrobial resistance genes mdsA and mdsB, that encode an efflux pump, were found in all the strains studied. The strains from Brazil carried other resistance genes, such as tet(A) (n = 11), tet(B) (n = 4) and tet(C) (n = 4), blaTEM-1 (n = 4), catA1 (n = 1), aadA1 (n = 1), and sul1 (n = 1). In conclusion, S. Dublin strains isolated in Brazil presented some few unique genes not found in strains from other countries and were allocated into two distinct clades with strains of human and animal origin epidemiologically related. This fact stresses the zoonotic potential of S. Dublin circulating in Brazil for more than 30 years.
Collapse
Affiliation(s)
- Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Guojie Cao
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - George Kastanis
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Dália Dos Prazeres Rodrigues
- Laboratório de Enterobactérias, FIOCRUZ/Fundação Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, 3°andar, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Renata Garcia Costa
- Laboratório de Enterobactérias, FIOCRUZ/Fundação Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, 3°andar, Manguinhos, Rio de Janeiro, RJ, Brazil
| | | | - Lanlan Yin
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD, USA
| | - Marc Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA.
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
6
|
Klose C, Scuda N, Ziegler T, Eisenberger D, Hanczaruk M, Riehm JM. Whole-Genome Investigation of Salmonella Dublin Considering Mountain Pastures as Reservoirs in Southern Bavaria, Germany. Microorganisms 2022; 10:885. [PMID: 35630330 PMCID: PMC9146225 DOI: 10.3390/microorganisms10050885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Worldwide, Salmonella Dublin (S. Dublin) is responsible for clinical disease in cattle and also in humans. In Southern Bavaria, Germany, the serovar was identified as a causative agent for 54 animal disease outbreaks in herds between 2017 and 2021. Most of these emerged from cattle herds (n = 50). Two occurred in pig farms and two in bovine herds other than cattle. Genomic analysis of 88 S. Dublin strains isolated during these animal disease outbreaks revealed 7 clusters with 3 different MLST-based sequence types and 16 subordinate cgMLST-based complex types. Antimicrobial susceptibility investigation revealed one resistant and three intermediate strains. Furthermore, only a few genes coding for bacterial virulence were found among the isolates. Genome analysis enables pathogen identification and antimicrobial susceptibility, serotyping, phylogeny, and follow-up traceback analysis. Mountain pastures turned out to be the most likely locations for transmission between cattle of different herd origins, as indicated by epidemiological data and genomic traceback analyses. In this context, S. Dublin shedding was also detected in asymptomatic herding dogs. Due to the high prevalence of S. Dublin in Upper Bavaria over the years, we suggest referring to this administrative region as "endemic". Consequently, cattle should be screened for salmonellosis before and after mountain pasturing.
Collapse
Affiliation(s)
- Corinna Klose
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - Tobias Ziegler
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - David Eisenberger
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - Matthias Hanczaruk
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleißheim, Germany;
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleißheim, Germany;
| |
Collapse
|
7
|
Tanui CK, Karanth S, Njage PM, Meng J, Pradhan AK. Machine learning-based predictive modeling to identify genotypic traits associated with Salmonella enterica disease endpoints in isolates from ground chicken. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Srednik ME, Lantz K, Hicks JA, Morningstar-Shaw BR, Mackie TA, Schlater LK. Antimicrobial resistance and genomic characterization of Salmonella Dublin isolates in cattle from the United States. PLoS One 2021; 16:e0249617. [PMID: 34547028 PMCID: PMC8454963 DOI: 10.1371/journal.pone.0249617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica subspecies enterica serotype Dublin is a host-adapted serotype in cattle, associated with enteritis and systemic disease. The primary clinical manifestation of Salmonella Dublin infection in cattle, especially calves, is respiratory disease. While rare in humans, it can cause severe illness, including bacteremia, with hospitalization and death. In the United States, S. Dublin has become one of the most multidrug-resistant serotypes. The objective of this study was to characterize S. Dublin isolates from sick cattle by analyzing phenotypic and genotypic antimicrobial resistance (AMR) profiles, the presence of plasmids, and phylogenetic relationships. S. Dublin isolates (n = 140) were selected from submissions to the NVSL for Salmonella serotyping (2014-2017) from 21 states. Isolates were tested for susceptibility against 14 class-representative antimicrobial drugs. Resistance profiles were determined using the ABRicate with Resfinder and NCBI databases, AMRFinder and PointFinder. Plasmids were detected using ABRicate with PlasmidFinder. Phylogeny was determined using vSNP. We found 98% of the isolates were resistant to more than 4 antimicrobials. Only 1 isolate was pan-susceptible and had no predicted AMR genes. All S. Dublin isolates were susceptible to azithromycin and meropenem. They showed 96% resistance to sulfonamides, 97% to tetracyclines, 95% to aminoglycosides and 85% to beta-lactams. The most common AMR genes were: sulf2 and tetA (98.6%), aph(6)-Id (97.9%), aph(3'')-Ib, (97.1%), floR (94.3%), and blaCMY-2 (85.7%). All quinolone resistant isolates presented mutations in gyrA. Ten plasmid types were identified among all isolates with IncA/C2, IncX1, and IncFII(S) being the most frequent. The S. Dublin isolates show low genomic genetic diversity. This study provided antimicrobial susceptibility and genomic insight into S. Dublin clinical isolates from cattle in the U.S. Further sequence analysis integrating food and human origin S. Dublin isolates may provide valuable insight on increased virulence observed in humans.
Collapse
Affiliation(s)
- Mariela E. Srednik
- United States Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Ames, Iowa, United States of America
- * E-mail:
| | - Kristina Lantz
- United States Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Jessica A. Hicks
- United States Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Brenda R. Morningstar-Shaw
- United States Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Tonya A. Mackie
- United States Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Linda K. Schlater
- United States Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| |
Collapse
|
9
|
Salmonella enterica Serovars Dublin and Enteritidis Comparative Proteomics Reveals Differential Expression of Proteins Involved in Stress Resistance, Virulence, and Anaerobic Metabolism. Infect Immun 2021; 89:IAI.00606-20. [PMID: 33361201 DOI: 10.1128/iai.00606-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The Enteritidis and Dublin serovars of Salmonella enterica are phylogenetically closely related yet differ significantly in host range and virulence. S Enteritidis is a broad-host-range serovar that commonly causes self-limited gastroenteritis in humans, whereas S Dublin is a cattle-adapted serovar that can infect humans, often resulting in invasive extraintestinal disease. The mechanism underlying the higher invasiveness of S Dublin remains undetermined. In this work, we quantitatively compared the proteomes of clinical isolates of each serovar grown under gut-mimicking conditions. Compared to S Enteritidis, the S Dublin proteome was enriched in proteins linked to response to several stress conditions, such as those encountered during host infection, as well as to virulence. The S Enteritidis proteome contained several proteins related to central anaerobic metabolism pathways that were undetected in S Dublin. In contrast to what has been observed in other extraintestinal serovars, most of the coding genes for these pathways are not degraded in S Dublin. Thus, we provide evidence that S Dublin metabolic functions may be much more affected than previously reported based on genomic studies. Single and double null mutants in stress response proteins Dps, YciF, and YgaU demonstrate their relevance to S Dublin invasiveness in a murine model of invasive salmonellosis. All in all, this work provides a basis for understanding interserovar differences in invasiveness and niche adaptation, underscoring the relevance of using proteomic approaches to complement genomic studies.
Collapse
|
10
|
Ung A, Baidjoe AY, Van Cauteren D, Fawal N, Fabre L, Guerrisi C, Danis K, Morand A, Donguy MP, Lucas E, Rossignol L, Lefèvre S, Vignaud ML, Cadel-Six S, Lailler R, Jourdan-Da Silva N, Le Hello S. Disentangling a complex nationwide Salmonella Dublin outbreak associated with raw-milk cheese consumption, France, 2015 to 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30670140 PMCID: PMC6344836 DOI: 10.2807/1560-7917.es.2019.24.3.1700703] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On 18 January 2016, the French National Reference Centre for Salmonella reported to Santé publique France an excess of Salmonella enterica serotype Dublin (S. Dublin) infections. We investigated to identify the source of infection and implement control measures. Whole genome sequencing (WGS) and multilocus variable-number tandem repeat analysis (MLVA) were performed to identify microbiological clusters and links among cases, animal and food sources. Clusters were defined as isolates with less than 15 single nucleotide polymorphisms determined by WGS and/or with identical MLVA pattern. We compared different clusters of cases with other cases (case–case study) and controls recruited from a web-based cohort (case–control study) in terms of food consumption. We interviewed 63/83 (76%) cases; 2,914 controls completed a questionnaire. Both studies’ findings indicated that successive S. Dublin outbreaks from different sources had occurred between November 2015 and March 2016. In the case–control study, cases of distinct WGS clusters were more likely to have consumed Morbier (adjusted odds ratio (aOR): 14; 95% confidence interval (CI): 4.8–42) or Vacherin Mont d’Or (aOR: 27; 95% CI: 6.8–105), two bovine raw-milk cheeses. Based on these results, the Ministry of Agriculture launched a reinforced control plan for processing plants of raw-milk cheeses in the production region, to prevent future outbreaks.
Collapse
Affiliation(s)
- Aymeric Ung
- These authors contributed equally to this article and share first authorship.,European Programme for Intervention Epidemiology Training (EPIET), European Centre of Disease Prevention and Control (ECDC), Stockholm, Sweden.,Santé publique France (SpFrance), the French national public health agency, Saint-Maurice, France
| | - Amrish Y Baidjoe
- Institut Pasteur, Enteric Bacterial Pathogens Unit, National Reference Center (NRC) for E. coli, Shigella and Salmonella, Paris, France.,European Programme for Public Health Microbiology Training (EUPHEM), European Centre of Disease Prevention and Control (ECDC), Stockholm, Sweden.,These authors contributed equally to this article and share first authorship
| | - Dieter Van Cauteren
- Santé publique France (SpFrance), the French national public health agency, Saint-Maurice, France
| | - Nizar Fawal
- Institut Pasteur, Enteric Bacterial Pathogens Unit, National Reference Center (NRC) for E. coli, Shigella and Salmonella, Paris, France
| | - Laetitia Fabre
- Institut Pasteur, Enteric Bacterial Pathogens Unit, National Reference Center (NRC) for E. coli, Shigella and Salmonella, Paris, France
| | - Caroline Guerrisi
- Sorbonne Université, UPMC, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique, IPLESP, Paris, France
| | - Kostas Danis
- European Programme for Intervention Epidemiology Training (EPIET), European Centre of Disease Prevention and Control (ECDC), Stockholm, Sweden.,Santé publique France (SpFrance), the French national public health agency, Saint-Maurice, France
| | - Anne Morand
- French Directorate General for Food (DGAL), Ministry of Agriculture and Food, Paris, France
| | - Marie-Pierre Donguy
- French Directorate General for Food (DGAL), Ministry of Agriculture and Food, Paris, France
| | - Etienne Lucas
- Santé publique France (SpFrance), the French national public health agency, Saint-Maurice, France
| | - Louise Rossignol
- Sorbonne Université, UPMC, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique, IPLESP, Paris, France
| | - Sophie Lefèvre
- Institut Pasteur, Enteric Bacterial Pathogens Unit, National Reference Center (NRC) for E. coli, Shigella and Salmonella, Paris, France
| | - Marie-Léone Vignaud
- Université Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory for Food Safety, Maisons-Alfort, France
| | - Sabrina Cadel-Six
- Université Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory for Food Safety, Maisons-Alfort, France
| | - Renaud Lailler
- Université Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory for Food Safety, Maisons-Alfort, France
| | - Nathalie Jourdan-Da Silva
- These authors contributed equally to this article and share last authorship.,Santé publique France (SpFrance), the French national public health agency, Saint-Maurice, France
| | - Simon Le Hello
- These authors contributed equally to this article and share last authorship.,Institut Pasteur, Enteric Bacterial Pathogens Unit, National Reference Center (NRC) for E. coli, Shigella and Salmonella, Paris, France
| |
Collapse
|
11
|
Virulence traits and expression of bstA, fliC and sopE2 in Salmonella Dublin strains isolated from humans and animals in Brazil. INFECTION GENETICS AND EVOLUTION 2020; 80:104193. [DOI: 10.1016/j.meegid.2020.104193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
|
12
|
Nair S, Fookes M, Corton C, Thomson NR, Wain J, Langridge GC. Genetic Markers in S. Paratyphi C Reveal Primary Adaptation to Pigs. Microorganisms 2020; 8:microorganisms8050657. [PMID: 32365926 PMCID: PMC7285187 DOI: 10.3390/microorganisms8050657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Salmonella enterica with the identical antigenic formula 6,7:c:1,5 can be differentiated biochemically and by disease syndrome. One grouping, Salmonella Paratyphi C, is currently considered a typhoidal serovar, responsible for enteric fever in humans. The human-restricted typhoidal serovars (S. Typhi and Paratyphi A, B and C) typically display high levels of genome degradation and are cited as an example of convergent evolution for host adaptation in humans. However, S. Paratyphi C presents a different clinical picture to S. Typhi/Paratyphi A, in a patient group with predisposition, raising the possibility that its natural history is different, and that infection is invasive salmonellosis rather than enteric fever. Using whole genome sequencing and metabolic pathway analysis, we compared the genomes of 17 S. Paratyphi C strains to other members of the 6,7:c:1,5 group and to two typhoidal serovars: S. Typhi and Paratyphi A. The genome degradation observed in S. Paratyphi C was much lower than S. Typhi/Paratyphi A, but similar to the other 6,7:c:1,5 strains. Genomic and metabolic comparisons revealed little to no overlap between S. Paratyphi C and the other typhoidal serovars, arguing against convergent evolution and instead providing evidence of a primary adaptation to pigs in accordance with the 6,7:c:1.5 strains.
Collapse
Affiliation(s)
- Satheesh Nair
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London NW9 5EQ, UK;
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (M.F.); (C.C.); (N.R.T.)
| | - Craig Corton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (M.F.); (C.C.); (N.R.T.)
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (M.F.); (C.C.); (N.R.T.)
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
- Microbes in the Food Chain, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK;
- Correspondence:
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK;
| |
Collapse
|
13
|
Epidemiology of Salmonella enterica Serovar Dublin in Cattle and Humans in Denmark, 1996 to 2016: a Retrospective Whole-Genome-Based Study. Appl Environ Microbiol 2020; 86:AEM.01894-19. [PMID: 31732576 DOI: 10.1128/aem.01894-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Dublin is a cattle-adapted S. enterica serovar causing both intestinal and systemic infection in its bovine host, and it is also a serious threat to human health. The present study aimed to determine the population structure of S Dublin isolates obtained from Danish cattle herds and to investigate how cattle isolates relate to Danish human isolates, as well as to non-Danish human and bovine isolates. Phylogenetic analysis of 197 Danish cattle isolates from 1996 to 2016 identified three major clades corresponding to distinct geographical regions of cattle herds. Persistence of closely related isolates within the same herd and their circulation between epidemiologically linked herds for a period of more than 20 years were demonstrated. These findings suggest that a lack of internal biosecurity and, to some extent, also a lack of external biosecurity in the herds have played an important role in the long-term persistence of S Dublin in Danish cattle herds in the period investigated. Global population analysis revealed that Danish cattle isolates clustered separately from bovine isolates from other countries, whereas human isolates were geographically spread. Resistance genes were not commonly demonstrated in Danish bovine isolates; only the isolates within one Danish clade were found to often harbor two plasmids of IncFII/IncFIB and IncN types, the latter plasmid carrying bla TEM-1, tetA, strA, and strB antibiotic resistance genes.IMPORTANCE S Dublin causes economic losses in cattle production, and the bacterium is a public health concern. A surveillance and control program has been in place in Denmark since 2002 with the ultimate goal to eradicate S Dublin from Danish cattle herds; however, a small proportion of herds have remained positive for many years. In this study, we demonstrate that herds with persistent infection often were infected with the same strain for many years, indicating that internal biosecurity has to be improved to curb the infection. Further, domestic cases of S Dublin infection in humans were found to be caused both by Danish cattle isolates and by isolates acquired abroad. This study shows the strength of whole-genome sequencing to obtain detailed information on epidemiology of S Dublin and allows us to suggest internal biosecurity as a main way to control this bacterium in Danish cattle herds.
Collapse
|
14
|
Mohammed M, Thapa S. Evaluation of WGS-subtyping methods for epidemiological surveillance of foodborne salmonellosis. ONE HEALTH OUTLOOK 2020; 2:13. [PMID: 33829134 PMCID: PMC7993512 DOI: 10.1186/s42522-020-00016-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/01/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Salmonellosis is one of the most common foodborne diseases worldwide. Although human infection by non-typhoidal Salmonella (NTS) enterica subspecies enterica is associated primarily with a self-limiting diarrhoeal illness, invasive bacterial infections (such as septicaemia, bacteraemia and meningitis) were also reported. Human outbreaks of NTS were reported in several countries all over the world including developing as well as high-income countries. Conventional laboratory methods such as pulsed field gel electrophoresis (PFGE) do not display adequate discrimination and have their limitations in epidemiological surveillance. It is therefore very crucial to use accurate, reliable and highly discriminative subtyping methods for epidemiological characterisation and outbreak investigation. METHODS Here, we used different whole genome sequence (WGS)-based subtyping methods for retrospective investigation of two different outbreaks of Salmonella Typhimurium and Salmonella Dublin that occurred in 2013 in UK and Ireland respectively. RESULTS Single nucleotide polymorphism (SNP)-based cluster analysis of Salmonella Typhimurium genomes revealed well supported clades, that were concordant with epidemiologically defined outbreak and confirmed the source of outbreak is due to consumption of contaminated mayonnaise. SNP-analyses of Salmonella Dublin genomes confirmed the outbreak however the source of infection could not be determined. The core genome multilocus sequence typing (cgMLST) was discriminatory and separated the outbreak strains of Salmonella Dublin from the non-outbreak strains that were concordant with the epidemiological data however cgMLST could neither discriminate between the outbreak and non-outbreak strains of Salmonella Typhimurium nor confirm that contaminated mayonnaise is the source of infection, On the other hand, other WGS-based subtyping methods including multilocus sequence typing (MLST), ribosomal MLST (rMLST), whole genome MLST (wgMLST), clustered regularly interspaced short palindromic repeats (CRISPRs), prophage sequence profiling, antibiotic resistance profile and plasmid typing methods were less discriminatory and could not confirm the source of the outbreak. CONCLUSIONS Foodborne salmonellosis is an important concern for public health therefore, it is crucial to use accurate, reliable and highly discriminative subtyping methods for epidemiological surveillance and outbreak investigation. In this study, we showed that SNP-based analyses do not only have the ability to confirm the occurrence of the outbreak but also to provide definitive evidence of the source of the outbreak in real-time.
Collapse
Affiliation(s)
- Manal Mohammed
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, UK
| | - Salina Thapa
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, UK
| |
Collapse
|
15
|
Characterization of Salmonella Dublin isolated from bovine and human hosts. BMC Microbiol 2019; 19:226. [PMID: 31619165 PMCID: PMC6796477 DOI: 10.1186/s12866-019-1598-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica serovar Dublin (S. Dublin), a cattle adapted serovar causes enteritis, and systemic disease in bovines. The invasive index of this serovar far exceeds that of the other serovars and human infections often present as fatal or highly resistant infections. In this, observational study, phenotypic properties of human and bovine-derived isolates of S. Dublin along with antibiogram of common antimicrobials were evaluated. The multiplex PCR confirmed isolates were genotyped using 7-gene legacy MLST. MIC assay was done by broth microdilution method. Previously published protocols were used to assess the motility, biofilm formation and morphotype. Vi antigen was agglutinated using commercial antiserum. Caenorhabditis elegans infection model was used to evaluate the virulence potiential. Phenotyping experiments were done in duplicates while virulence assay was done in triplicates. Whole-genome sequencing was used to predict the genes responsible for acquired resistance and a genotype-phenotype comparison was made. RESULTS We evaluated 96 bovine and 10 human isolates in this study. All the isolates belonged to ST10 in eBG53 and were negative for Vi-antigen. The swarming motility, biofilm formation and morphotype were variable in the isolates of both groups. Resistance to sulfamethoxazole, ampicillin, chloramphenicol, tetracycline was > 90% in animal isolates whereas resistance to sulfamethoxazole was > 70% in human isolates. MDR was also higher in animal isolates. Human isolates were significantly (P < 0.0001) more virulent than animal isolates on C. elegans infection model. The genomic comparison based on the core SNPs showed a high degree of homogeneity between the isolates. The carriage of IncA/C2 plasmid was seen as a typical feature of isolates from the bovine hosts. CONCLUSION Human isolates showed more diversity in the phenotypic assays. Animal isolates showed a higher degree of antimicrobial resistance with greater MDR but human isolates formed more biofilm and had greater swarming motility as well as increased virulence to the nematode C. elegans. The carriage of IncA/C2 plasmid could contribute to the distinguishing feature of the bovine isolates. The tandem use of genotypic-phenotypic assays improves the understanding of diversity and differential behaviour of the same serovar from unrelated host sources.
Collapse
|
16
|
Fenske GJ, Thachil A, McDonough PL, Glaser A, Scaria J. Geography Shapes the Population Genomics of Salmonella enterica Dublin. Genome Biol Evol 2019; 11:2220-2231. [PMID: 31329231 PMCID: PMC6703130 DOI: 10.1093/gbe/evz158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serotype Dublin (S. Dublin) is a bovine-adapted serotype that can cause serious systemic infections in humans. Despite the increasing prevalence of human infections and the negative impact on agricultural processes, little is known about the population structure of the serotype. To this end, we compiled a manually curated data set comprising of 880 S. Dublin genomes. Core genome phylogeny and ancestral state reconstruction revealed that region-specific clades dominate the global population structure of S. Dublin. Strains of S. Dublin in the UK are genomically distinct from US, Brazilian, and African strains. The geographical partitioning impacts the composition of the core genome as well as the ancillary genome. Antibiotic resistance genes are almost exclusively found in US genomes and are mediated by an IncA/C2 plasmid. Phage content and the S. Dublin virulence plasmid were strongly conserved in the serotype. Comparison of S. Dublin to a closely related serotype, S. enterica serotype Enteritidis, revealed that S. Dublin contains 82 serotype specific genes that are not found in S. Enteritidis. Said genes encode metabolic functions involved in the uptake and catabolism of carbohydrates and virulence genes associated with type VI secretion systems and fimbria assembly respectively.
Collapse
Affiliation(s)
- Gavin J Fenske
- Department of Veterinary and Biomedical Sciences, South Dakota State University
| | - Anil Thachil
- Department of Population Medicine and Diagnostic Sciences, Cornell University
| | - Patrick L McDonough
- Department of Population Medicine and Diagnostic Sciences, Cornell University
| | - Amy Glaser
- Department of Population Medicine and Diagnostic Sciences, Cornell University
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University
| |
Collapse
|
17
|
Whole-Genome Sequences of Two Salmonella enterica Serovar Dublin Strains That Harbor the viaA, viaB, and ompB Loci of the Vi Antigen. Microbiol Resour Announc 2019; 8:8/14/e00028-19. [PMID: 30948462 PMCID: PMC6449553 DOI: 10.1128/mra.00028-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Here, we report the genome sequences of two Salmonella enterica serovar Dublin strains, 03EB8736SAL and 03EB8994SAL, isolated from raw-milk cheese and milk filtrate, respectively. Analysis of the draft genomes of the two isolates reveals the presence of the viaA, viaB, and ompB loci of the Vi capsular polysaccharide antigen (Vi antigen). Here, we report the genome sequences of two Salmonella enterica serovar Dublin strains, 03EB8736SAL and 03EB8994SAL, isolated from raw-milk cheese and milk filtrate, respectively. Analysis of the draft genomes of the two isolates reveals the presence of the viaA, viaB, and ompB loci of the Vi capsular polysaccharide antigen (Vi antigen).
Collapse
|
18
|
Draft Genome Sequences of Salmonella enterica subsp. enterica Serovar Dublin Strains from St. Nectaire and Morbier Cheeses Characterized by Multilocus Variable-Number Tandem-Repeat Analysis Profiles Associated with Two Fatal Outbreaks in France. Microbiol Resour Announc 2019; 8:MRA01361-18. [PMID: 30637388 PMCID: PMC6318359 DOI: 10.1128/mra.01361-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/21/2018] [Indexed: 01/20/2023] Open
Abstract
We report here the draft genome sequences of 2 Salmonella enterica subsp. enterica serovar Dublin strains from St. Nectaire and Morbier cheeses having multilocus variable-number tandem-repeat analysis (MLVA) profiles identified during the fatal outbreaks that occurred in France in 2012 and 2015 to 2016, respectively. We report here the draft genome sequences of 2 Salmonella enterica subsp. enterica serovar Dublin strains from St. Nectaire and Morbier cheeses having multilocus variable-number tandem-repeat analysis (MLVA) profiles identified during the fatal outbreaks that occurred in France in 2012 and 2015 to 2016, respectively. These draft genome sequences will help uncover the virulence determinants in invasive S. Dublin strains.
Collapse
|
19
|
A Naturally Occurring Deletion in FliE from Salmonella enterica Serovar Dublin Results in an Aflagellate Phenotype and Defective Proinflammatory Properties. Infect Immun 2017; 86:IAI.00517-17. [PMID: 29061704 DOI: 10.1128/iai.00517-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
Salmonella enterica serovar Dublin is adapted to cattle but is able to infect humans with high invasiveness. An acute inflammatory response at the intestine helps to prevent Salmonella dissemination to systemic sites. Flagella contribute to this response by providing motility and FliC-mediated signaling through pattern recognition receptors. In a previous work, we reported a high frequency (11 out of 25) of S Dublin isolates lacking flagella in a collection obtained from humans and cattle. The aflagellate strains were impaired in their proinflammatory properties in vitro and in vivo The aim of this work was to elucidate the underlying cause of the absence of flagella in S Dublin isolates. We report here that class 3 flagellar genes are repressed in the human aflagellate isolates, due to impaired secretion of FliA anti-sigma factor FlgM. This phenotype is due to an in-frame 42-nucleotide deletion in the fliE gene, which codes for a protein located in the flagellar basal body. The deletion is predicted to produce a protein lacking amino acids 18 to 31. The aflagellate phenotype was highly stable; revertants were obtained only when fliA was artificially overexpressed combined with several successive passages in motility agar. DNA sequence analysis revealed that motile revertants resulted from duplications of DNA sequences in fliE adjacent to the deleted region. These duplications produced a FliE protein of similar length to the wild type and demonstrate that amino acids 18 to 31 of FliE are not essential. The same deletion was detected in S Dublin isolates obtained from cattle, indicating that this mutation circulates in nature.
Collapse
|
20
|
The invasome of Salmonella Dublin as revealed by whole genome sequencing. BMC Infect Dis 2017; 17:544. [PMID: 28778189 PMCID: PMC5544996 DOI: 10.1186/s12879-017-2628-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Background Salmonella enterica serovar Dublin is a zoonotic infection that can be transmitted from cattle to humans through consumption of contaminated milk and milk products. Outbreaks of human infections by S. Dublin have been reported in several countries including high-income countries. A high proportion of S. Dublin cases in humans are associated with invasive disease and systemic illness. The genetic basis of virulence in S. Dublin is not well characterized. Methods Whole genome sequencing was applied to a set of clinical invasive and non-invasive S. Dublin isolates from different countries in order to characterize the putative genetic determinants involved in the virulence and invasiveness of S. Dublin in humans. Results We identified several virulence factors that form the bacterial invasome and may contribute to increasing bacterial virulence and pathogenicity including mainly Gifsy-2 prophage, two different type 6 secretion systems (T6SSs) harbored by Salmonella pathogenicity islands; SPI-6 and SPI-19 respectively and virulence genes; ggt and PagN. Although Vi antigen and the virulence plasmid have been reported previously to contribute to the virulence of S. Dublin we did not detect them in all invasive isolates indicating that they are not the main virulence determinants in S. Dublin. Conclusion Several virulence factors within the genome of S. Dublin might contribute to the ability of S. Dublin to invade humans’ blood but there were no genomic markers that differentiate invasive from non-invasive isolates suggesting that host immune response play a crucial role in the clinical outcome of S. Dublin infection. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2628-x) contains supplementary material, which is available to authorized users.
Collapse
|