1
|
Van Poelvoorde LAE, Karlsson EA, Dupont-Rouzeyrol M, Roosens NHCJ. Can Wastewater Surveillance Enhance Genomic Tracking of Climate-Driven Pathogens? Microorganisms 2025; 13:294. [PMID: 40005661 PMCID: PMC11858121 DOI: 10.3390/microorganisms13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Climate change heightens the threat of infectious diseases in Europe, necessitating innovative surveillance methods. Based on 390 scientific papers, for the first time, this review associates climate-related pathogens, data related to their presence in wastewater, and associated available genomic detection methods. This deep analysis reveals a wide range of pathogens that can be tracked through methods such as quantitative and digital PCR, as well as genomic pathogen enrichment in combination with sequencing and metagenomics. Nevertheless, significant gaps remain in the development of methods, particularly for vector-borne pathogens, and in their general harmonization relating to performance criteria. By offering an overview of recent advancements while identifying critical gaps, we advocate for collaborative research and validation to integrate detection techniques into surveillance frameworks. This will enhance public health resilience against emerging infectious diseases driven by climate change.
Collapse
Affiliation(s)
| | - Erik A. Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh 120210, Cambodia
| | | | | |
Collapse
|
2
|
Sideroglou T, Chrysostomou A, Politi L, Georgalis L, Mellou K. Gastroenteritis Outbreaks after Contamination of Water Supply Systems: Public Health Response Gaps and Challenges, Greece, 2004-2023. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:701. [PMID: 38928947 PMCID: PMC11203888 DOI: 10.3390/ijerph21060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND waterborne disease outbreaks (WGDOs) following the contamination of drinking water remain a public health concern. METHODS The current study aims to assess the occurrence and identify gaps in the notification and investigation of WGDOs in Greece. Data for 2004-2023 were retrieved and summarized. RESULTS Thirty-five outbreaks with 6128 recorded cases were identified. The median time from the date of onset in the first cases to reporting was 7 days (range: 1-26 days). Authorities were informed by health care services in thirty (85.7%) outbreaks and by the media in five (14.3%). The investigation methods used varied. An analytical study was conducted in nine (25.7%) outbreaks and the testing of clinical samples in twenty-seven (77.1%). In three (11.1%) outbreaks, clinical samples were simultaneously tested for multiple bacteria, viruses, and parasites. Water samples were collected in nineteen (54.3%) outbreaks (in three after chlorination) with a mean time lag of 5 days (range: 1-20 days) from the first cases. A pathogen in clinical samples was identified in 20 (57.1%) outbreaks and, in 1 (6.25%), the same microorganism was isolated in both clinical and water samples. CONCLUSIONS delays in reporting and the heterogeneity of investigations depict that the surveillance of WGDOs and response practices should be strengthened, and operational procedures should be standardised.
Collapse
Affiliation(s)
- Theologia Sideroglou
- Department of Foodborne and Waterborne Diseases, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece; (T.S.); (A.C.); (L.G.)
| | - Anthi Chrysostomou
- Department of Foodborne and Waterborne Diseases, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece; (T.S.); (A.C.); (L.G.)
| | - Lida Politi
- Department of Microbial Resistance and Infections in Health Care Settings, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece;
| | - Leonidas Georgalis
- Department of Foodborne and Waterborne Diseases, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece; (T.S.); (A.C.); (L.G.)
| | - Kassiani Mellou
- Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece
| |
Collapse
|
3
|
Politi L, Mellou K, Chrysostomou A, Mandilara G, Spiliopoulou I, Theofilou A, Polemis M, Tryfinopoulou K, Sideroglou T. A Community Waterborne Salmonella Bovismorbificans Outbreak in Greece. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:167. [PMID: 38397659 PMCID: PMC10887688 DOI: 10.3390/ijerph21020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND In August 2022, the Hellenic National Public Health Organisation was notified about a gastroenteritis outbreak in town A in Southern Greece. Investigations aimed to identify the source and implement control measures. METHODS Case definition categories were used in a 1:3 case-control study. Cases and controls were interviewed about various exposures. Cases' stool samples were cultured on agar plates and characterised by serotyping, antimicrobial susceptibility testing and Pulse Field Gel Electrophoresis (PFGE). Environmental investigations included tap water sampling for microbiological and chemical analysis in town A and inspection of the water supply system. RESULTS We identified 33 cases (median age: 17 years). Tap water consumption was the only significant risk factor for gastroenteritis (OR = 5.46, 95% CI = 1.02-53.95). Salmonella (S.) Bovismorbificans isolated from eight stool and one tap water samples had identical PFGE profiles. No resistant isolates were identified. Residual chlorine levels were lower than the acceptable limits before and during the outbreak. We advised consumption of bottled water and adherence to strict hand hygiene rules until tap water was declared suitable for drinking. CONCLUSIONS Epidemiological and molecular data revealed a waterborne S. Bovismorbificans outbreak in town A. We recommend local water safety authorities to ensure that residual chlorine levels comply with the legislation towards water safety planning, to mitigate risks.
Collapse
Affiliation(s)
- Lida Politi
- Department of Microbial Resistance and Infections in Health Care Settings, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece;
| | - Kassiani Mellou
- Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece
| | - Anthi Chrysostomou
- Department of Foodborne and Waterborne Diseases, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece; (A.C.); (T.S.)
| | - Georgia Mandilara
- National Reference Centre for Salmonella and Shigella, School of Public Health, University of West Attica, 11521 Athens, Greece;
| | - Ioanna Spiliopoulou
- Central Public Health Laboratory, National Public Health Organization, 16672 Vari, Greece; (I.S.); (K.T.)
| | - Antonia Theofilou
- Water Microbiology Laboratory, Central Public Health Laboratory, National Public Health Organization, 16672 Vari, Greece;
| | - Michalis Polemis
- National Electronic Antimicrobial Resistance Surveillance Network, Central Public Health Laboratory, National Public Health Organization, 16672 Vari, Greece;
| | - Kyriaki Tryfinopoulou
- Central Public Health Laboratory, National Public Health Organization, 16672 Vari, Greece; (I.S.); (K.T.)
| | - Theologia Sideroglou
- Department of Foodborne and Waterborne Diseases, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, 15123 Athens, Greece; (A.C.); (T.S.)
| |
Collapse
|
4
|
Liu F, Lee SA, Xue J, Riordan SM, Zhang L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front Cell Infect Microbiol 2022; 12:979055. [PMID: 36519137 PMCID: PMC9742372 DOI: 10.3389/fcimb.2022.979055] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacteriosis is a gastroenteritis caused by pathogenic Campylobacter species and an important topic in public health. Here we review the global epidemiology of campylobacteriosis in the last eight years between 2014-2021, providing comprehensive and updated information on the reported incidence and outbreaks of Campylobacter infections. The government public health website of each of the 195 countries and publications from 2014 to September 2022 in public databases were searched. The reported incidence of campylobacteriosis in pre-COVID-19 years was compared to that during the COVID-19 pandemic in countries where data were available. Czech Republic had the highest reported incidence of campylobacteriosis worldwide (215 per 100,000 in 2019), followed by Australia (146.8 per 100,000 in 2016) and New Zealand (126.1 per 100,000 in 2019). Campylobacter was one of the most common human enteric pathogens in both developed and developing countries. About 90% of cases of campylobacteriosis were caused by Campylobacter jejuni, whereas less than 10% of cases were caused by Campylobacter coli. Other Campylobacter species were also isolated. The reported incidence and case numbers of campylobacteriosis in developed nations have remained steadily high prior to the COVID-19 pandemic, whilst some countries reported an increasing trend such as France and Japan. While outbreaks were more frequently reported in some countries, Campylobacter infections were mainly sporadic cases in most of the developed countries. Campylobacter infection was more common in summer in some but not all countries. Campylobacter infection was more common in males than females. The COVID-19 pandemic has reduced the reported incidence of campylobacteriosis in most countries where 2020 epidemiology data were available. In conclusion, Campylobacter infection remains a global health concern. Increased research and improved strategies are needed for prevention and reduction of Campylobacter infection.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Xue
- Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Norovirus GII.3[P12] Outbreak Associated with the Drinking Water Supply in a Rural Area in Galicia, Spain, 2021. Microbiol Spectr 2022; 10:e0104822. [PMID: 35867474 PMCID: PMC9431064 DOI: 10.1128/spectrum.01048-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noroviruses are likely to be underrecognized in most suspected waterborne outbreaks. Therefore, effective norovirus detection and the early recognition of water as a possible source of infection are important to reduce morbidity as appropriate steps are taken to control the source.
Collapse
|
6
|
Shagieva E, Demnerova K, Michova H. Waterborne Isolates of Campylobacter jejuni Are Able to Develop Aerotolerance, Survive Exposure to Low Temperature, and Interact With Acanthamoeba polyphaga. Front Microbiol 2021; 12:730858. [PMID: 34777280 PMCID: PMC8578730 DOI: 10.3389/fmicb.2021.730858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is regarded as the leading cause of bacterial gastroenteritis around the world. Even though it is generally considered to be a sensitive microaerobic pathogen, it is able to survive in the environment outside of the intestinal tract of the host. This study aimed to assess the impact of selected environmental parameters on the survival of 14 C. jejuni isolates of different origins, including 12 water isolates. The isolates were tested for their antibiotic resistance, their ability to survive at low temperature (7°C), develop aerotolerance, and to interact with the potential protozoan host Acanthamoeba polyphaga. The antibiotic susceptibility was determined by standard disk diffusion according to EUCAST. Out of the 14 isolates, 8 were resistant to ciprofloxacin (CIP) and 5 to tetracycline (TET), while only one isolate was resistant to erythromycin (ERY). Five isolates were resistant to two different antibiotic classes. Tetracycline resistance was only observed in isolates isolated from wastewater and a clinical sample. Further, the isolates were tested for their survival at 7°C under both aerobic and microaerobic conditions using standard culture methods. The results showed that under microaerobic conditions, all isolates maintained their cultivability for 4 weeks without a significant decrease in the numbers of bacteria and variation between the isolates. However, significant differences were observed under aerobic conditions (AC). The incubation led to a decrease in the number of cultivable cells, with complete loss of cultivability after 2 weeks (one water isolate), 3 weeks (7 isolates), or 4 weeks of incubation (6 isolates). Further, all isolates were studied for their ability to develop aerotolerance by repetitive subcultivation under microaerobic and subsequently AC. Surprisingly, all isolates were able to adapt and grow under AC. As the last step, 5 isolates were selected to evaluate a potential protective effect provided by A. polyphaga. The cocultivation of isolates with the amoeba resulted in the survival of about 40% of cells treated with an otherwise lethal dose of gentamicin. In summary, C. jejuni is able to adapt and survive in a potentially detrimental environment for a prolonged period of time, which emphasizes the role of the environmental transmission route in the spread of campylobacteriosis.
Collapse
Affiliation(s)
- Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|