1
|
Khan WH, Ahmad R, Alam R, Khan N, Rather IA, Wani MY, Singh RB, Ahmad A. Role of ribosomal pathways and comorbidity in COVID-19: Insight from SARS-CoV-2 proteins and host proteins interaction network analysis. Heliyon 2024; 10:e29967. [PMID: 38694063 PMCID: PMC11059120 DOI: 10.1016/j.heliyon.2024.e29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The COVID-19 pandemic has become a significant global issue in terms of public health. While it is largely associated with respiratory complications, recent reports indicate that patients also experience neurological symptoms and other health issues. The objective of this study is to examine the network of protein-protein interactions (PPI) between SARS-CoV-2 proteins and human host proteins, pinpoint the central genes within this network implicated in disease pathology, and assess their viability as targets for drug development. The study adopts a network-based approach to construct a network of 29 SARS-CoV-2 proteins interacting with 2896 host proteins, with 176 host genes being identified as interacting genes with all the viral proteins. Gene ontology and pathway analysis of these host proteins revealed their role in biological processes such as translation, mRNA splicing, and ribosomal pathways. We further identified EEF2, RPS3, RPL9, RPS16, and RPL11 as the top 5 most connected hub genes in the disease-causing network, with significant interactions among each other. These hub genes were found to be involved in ribosomal pathways and cytoplasmic translation. Further a disease-gene interaction was also prepared to investigate the role of hub genes in other disorders and to understand the condition of comorbidity in COVID-19 patients. We also identified 13 drug molecules having interactions with all the hub genes, and estradiol emerged as the top potential drug target for the COVID-19 patients. Our study provides valuable insights using the protein-protein interaction network of SARS-CoV-2 proteins with host proteins and highlights the molecular basis of manifestation of COVID-19 and proposes drug for repurposing. As the pandemic continues to evolve, it is anticipated that investigating SARS-CoV-2 proteins will remain a critical area of focus for researchers globally, particularly in addressing potential challenges posed by specific SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ragib Alam
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - R.K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
2
|
Rizwan T, Kothidar A, Meghwani H, Sharma V, Shobhawat R, Saini R, Vaishnav HK, Singh V, Pratap M, Sihag H, Kumar S, Dey JK, Dey SK. Comparative analysis of SARS-CoV-2 envelope viroporin mutations from COVID-19 deceased and surviving patients revealed implications on its ion-channel activities and correlation with patient mortality. J Biomol Struct Dyn 2022; 40:10454-10469. [PMID: 34229570 DOI: 10.1080/07391102.2021.1944319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One major obstacle in designing a successful therapeutic regimen to combat COVID-19 pandemic is the frequent occurrence of mutations in the SARS-CoV-2 resulting in patient to patient variations. Out of the four structural proteins of SARS-CoV-2 namely, spike, envelope, nucleocapsid and membrane, envelope protein governs the virus pathogenicity and induction of acute-respiratory-distress-syndrome which is the major cause of death in COVID-19 patients. These effects are facilitated by the viroporin (ion-channel) like activities of the envelope protein. Our current work reports metagenomic analysis of envelope protein at the amino acid sequence level through mining all the available SARS-CoV-2 genomes from the GISAID and coronapp servers. We found majority of mutations in envelope protein were localized at or near PDZ binding motif. Our analysis also demonstrates that the acquired mutations might have important implications on its structure and ion-channel activity. A statistical correlation between specific mutations (e.g. F4F, R69I, P71L, L73F) with patient mortalities were also observed, based on the patient data available for 18,691 SARS-CoV-2-genomes in the GISAID database till 30 April 2021. Albeit, whether these mutations exist as the cause or the effect of co-infections and/or co-morbid disorders within COVID-19 patients is still unclear. Moreover, most of the current vaccine and therapeutic interventions are revolving around spike protein. However, emphasizing on envelope protein's (1) conserved epitopes, (2) pathogenicity attenuating mutations, and (3) mutations present in the deceased patients, as reported in our present study, new directions to the ongoing efforts of therapeutic developments against COVID-19 can be achieved by targeting envelope viroporin.
Collapse
Affiliation(s)
- Tayyeba Rizwan
- Department of Biochemistry, University of Delhi South Campus, New Delhi, Delhi, India
| | - Akansha Kothidar
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Himanshu Meghwani
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Rahul Shobhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, Maharashtra, India
| | - Rajpal Saini
- Department of Statistics, Faculty of Mathematical Sciences, University of Delhi, New Delhi, Delhi, India
| | - Hemendra Kumar Vaishnav
- Operations Management, Quantitative Methods and Information Systems Area, Indian Institute of Management Udaipur, Udaipur, Rajasthan, India
| | - Vikramaditya Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Mukut Pratap
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Hitaishi Sihag
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shakti Kumar
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
3
|
In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Nucleocapsid Through Molecular Docking-Based Drug Repurposing. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2022. [PMCID: PMC9153216 DOI: 10.1007/s44229-022-00004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractSARS-CoV-2 is the virus responsible for the COVID-19 pandemic, and its effects on people worldwide continue to grow. Protein-targeted therapeutics are currently unavailable for this virus. As with other coronaviruses, the nucleocapsid (N) protein is the most conserved RNA-binding structural protein of SARS-CoV-2. The N protein is an appealing target because of its functional role in viral transcription and replication. Therefore, molecular docking method for structure-based drug design was used to investigate the binding energy and binding modes of various anti-N inhibitors in depth. The inhibitors selected were originally developed to target stress granules and other molecules involved in RNA biology, and were either FDA-approved or in the process of clinical trials for COVID-19. We aimed at targeting the N-terminal RNA binding domain (NTD) for molecular docking-based screening, on the basis of the first resolved crystal structure of SARS-CoV-2 N protein (PDB ID: 6M3M) and C-terminal domain (CTD) dimerization of the nucleocapsid phosphoprotein of SARS-COV-2 (PDB ID: 6WJI). Silmitasertib, nintedanib, ternatin, luteolin, and fedratinib were found to interact with RNA binding sites and to form a predicted protein interface with high binding energy. Similarly, silmitasertib, sirolimus-rapamycin, dovitinib, nintedanib, and fedratinib were found to interact with the SARS-CoV-2 N protein at its CTD dimerization sites, according to previous studies. In addition, we investigated an information gap regarding the relationships among the energetic landscape and stability and drug binding of the SARS-CoV-2 N NTD and CTD. Our in silico results clearly indicated that several tested drugs as potent putative inhibitors for COVID-19 therapeutics, thus indicating that they should be further validated as treatments to slow the spread of SARS-CoV-2.
Collapse
|
4
|
Alanazi KM, Farah MA, Hor YY. Multi-Targeted Approaches and Drug Repurposing Reveal Possible SARS-CoV-2 Inhibitors. Vaccines (Basel) 2021; 10:vaccines10010024. [PMID: 35062685 PMCID: PMC8781363 DOI: 10.3390/vaccines10010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is unprecedented in recent memory owing to the non-stop escalation in number of infections and deaths in almost every country of the world. The lack of treatment options further worsens the scenario, thereby necessitating the exploration of already existing US FDA-approved drugs for their effectiveness against COVID-19. In the present study, we have performed virtual screening of nutraceuticals available from DrugBank against 14 SARS-CoV-2 proteins. Molecular docking identified several inhibitors, two of which, rutin and NADH, displayed strong binding affinities and inhibitory potential against SARS-CoV-2 proteins. Further normal model-based simulations were performed to gain insights into the conformational transitions in proteins induced by the drugs. The computational analysis in the present study paves the way for experimental validation and development of multi-target guided inhibitors to fight COVID-19.
Collapse
Affiliation(s)
- Khalid Mashay Alanazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.M.A.); (M.A.F.)
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.M.A.); (M.A.F.)
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk-do, Korea
- Correspondence:
| |
Collapse
|