1
|
Gnyawali S, Feigl B, Adhikari P, Zele AJ. The role of melanopsin photoreception on visual attention linked pupil responses. Eur J Neurosci 2022; 55:1986-2002. [PMID: 35357050 PMCID: PMC9324975 DOI: 10.1111/ejn.15659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
A decision during a visual task is marked by a task‐evoked pupil dilation (TEPD) that is linked to the global cortical arousal state. Melanopsin expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) form the afferent pathway for this pupil response. Melanopsin activation also influences mood and arousal and increases activity in decision‐making brain areas that receive direct ipRGC projections. Here, an optical photostimulation method controlled the excitations of all five photoreceptor classes in the human eye to isolate melanopsin‐mediated photoreception. We hypothesised that the TEPD can be driven by directing active visual covert attention through the ipRGC pathway. When observers are completely certain of the stimulus presence, melanopsin‐directed stimulation produces a TEPD of similar amplitude to a cone‐directed stimulation, with their combination producing larger amplitudes. This dilation is satisfactorily modelled by linear addition with a higher melanopsin weighting in ipRGCs. Visual reaction times were longest in response to melanopsin‐directed lights. Next, we asked whether the afferent photoreceptor input and decision certainty, controlled by priming the observer's a priori expectation, interact to drive the TEPD. Signal detection analysis showed that by fixing the predecision certainty (bias), the phasic arousal and TEPD amplitude vary with observer criterion (c′) and sensitivity (d′) but not with preferential activation of melanopsin. The signature feature of the melanopsin response during attention was a biphasic TEPD. We conclude that active covert attention can be modulated by visual information mediated via ipRGCs, but that phasic arousal responses marked using the TEPD are not increased by higher levels of melanopsin activation.
Collapse
Affiliation(s)
- Subodh Gnyawali
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Beatrix Feigl
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Queensland Eye Institute, Brisbane, QLD, Australia
| | - Prakash Adhikari
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Andrew J Zele
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
2
|
Threshold vision under full-field stimulation: Revisiting the minimum number of quanta necessary to evoke a visual sensation. Vision Res 2020; 180:1-10. [PMID: 33359896 DOI: 10.1016/j.visres.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
At the absolute threshold of vision, Hecht, Shlaer and Pirenne estimate that 5-14 photons are absorbed within a retinal area containing ~500 rods. Other estimates of scotopic threshold vision based on stimuli with different durations and focal areas range up to ~100,000 photons. Given that rod density varies with retinal eccentricity and the magnitude of the intrinsic noise increases with increasing stimulus area and duration, here we determine whether the scotopic threshold estimates with focal stimuli can be extended to full-field stimulation and whether summation explains inter-study differences. We show that full-field threshold vision (~1018 mm2, 10 ms duration) is more sensitive than at absolute threshold, requiring the absorption of ~1000 photons across ~91.96 million rods. A summation model is presented integrating our and published data and using a nominal exposure duration, criterion frequency of seeing, rod density, and retinal area that largely explains the inter-study differences and allows estimation of rods per photon ratio for any stimulus size and duration. The highest signal to noise ratio is defined by a peak rod convergence estimated at 53:4:1:2 (rods:rod bipolar cells:AII amacrine cells:retinal ganglion cells), in line with macaque anatomical estimates that show AII amacrine cells form the bottleneck in the rod pathway to set the scotopic visual limit. Our model estimations that the rods per photon ratio under full-field stimulation is ~3000X higher than at absolute threshold are in accordance with visual summation effects and provide an alternative approach for understanding the limits of scotopic vision.
Collapse
|
3
|
Abstract
We as a couple spent 50 years working in visual psychophysics of color vision, temporal vision, and luminance adaptation. We sought collaborations with ophthalmologists, anatomists, physiologists, physicists, and psychologists, aiming to relate visual psychophysics to the underlying physiology of the primate retina. This review describes our journey and reflections in exploring the visual system.
Collapse
Affiliation(s)
- Joel Pokorny
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois 60637, USA;,
| | - Vivianne C. Smith
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois 60637, USA;,
| |
Collapse
|
4
|
Wijesundera C, Vingrys AJ, Wijeratne T, Crewther SG. Acquired Visual Deficits Independent of Lesion Site in Acute Stroke. Front Neurol 2020; 11:705. [PMID: 32765410 PMCID: PMC7380328 DOI: 10.3389/fneur.2020.00705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022] Open
Abstract
Most clinical diagnoses of stroke are based on the persistence of symptoms relating to consciousness, language, visual-field loss, extraocular movement, neglect (visual), motor strength, and sensory loss following acute cerebral infarction. Yet despite the fact that most motor actions and cognition are driven by vision, functional vision per se is seldom tested rigorously during hospitalization. Hence we set out to determine the effects of acute stroke on functional vision, using an iPad application (Melbourne Rapid Field-Neural) that can be used to assess vision (visual acuity and visual field sensitivity) at the bedside or in the emergency ward in about 6 min per eye. Our convenience sample comprised 60 (29–88 years, 65 ± 14 years, 33 males) of 160 sequentially presenting first episode, acute (<7 days) ischemic stroke patients at Sunshine Hospital, Melbourne. One hundred patients were excluded due to existing eye disease, inadequate radiological confirmation, inability to comply with English directions or too ill to participate. Stroke cases were compared with 37 (29–85 years, 64 ± 12 years,14 males) similar-aged controls using a Mann-Whitney U-test. A significant loss in visual field sensitivity was measured in 68% of stroke cases (41/60, Mean Deviation: Stroke: −5.39 ± 6.26 dB, Control: 0.30 ± 0.60 dB, MWU = 246, p < 0.0001). Surprisingly, 44% (18/41) of these patients were unaware of their field loss. Although high contrast visual acuity was unaffected in most (55/60) patients, visual acuity-in-noise was reduced in 62% (37/60, Stroke: mean 6/12−2, log MAR 0.34 ± 0.21 vs. Control: mean 6/7·5–2, log MAR 0.14 ± 0.10; MWU = 470, p < 0.0001). Visual field defects were associated with all occipital, parietal and posterior cerebellar artery strokes while 9/15 middle cerebral artery lesions and 11 lesions in other brain regions were also associated with visual field defects. Our findings demonstrate that ~2/3 of acute first episode ischemic stroke patients experience acquired vision deficits, often unrelated to the confirmed lesion site. Our results also imply that visual dysfunction may be associated with a more generalized cerebral dysfunction while highlighting the need for bedside testing of vision for every stroke patient and demonstrating the translational clinical value of the “Melbourne Rapid Field- Neural” iPad application. Clinical Trial:http://www.ANZCTR.org.au/ACTRN12618001111268.aspx.
Collapse
Affiliation(s)
- Chamini Wijesundera
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.,Department of Neurology, Sunshine Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tissa Wijeratne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.,Department of Neurology, Sunshine Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sheila G Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.,Department of Neurology, Sunshine Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Zele AJ, Adhikari P, Cao D, Feigl B. Melanopsin driven enhancement of cone-mediated visual processing. Vision Res 2019; 160:72-81. [DOI: 10.1016/j.visres.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 12/13/2022]
|
6
|
Hathibelagal AR, Feigl B, Kremers J, Zele AJ. Correlated and uncorrelated invisible temporal white noise alters mesopic rod signaling. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:A93-A103. [PMID: 26974946 DOI: 10.1364/josaa.33.000a93] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We determined how rod signaling at mesopic light levels is altered by extrinsic temporal white noise that is correlated or uncorrelated with the activity of one (magnocellular, parvocellular, or koniocellular) postreceptoral pathway. Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. Psychometric (Weibull) functions were measured for incremental rod pulses (50 to 250 ms) in the presence (or absence; control) of perceptually invisible subthreshold extrinsic noise. Uncorrelated (rod) noise facilitates rod detection. Correlated postreceptoral pathway noise produces differential changes in rod detection thresholds and decreases the slope of the psychometric functions. We demonstrate that invisible extrinsic noise changes rod-signaling characteristics within the three retinogeniculate pathways at mesopic illumination depending on the temporal profile of the rod stimulus and the extrinsic noise type.
Collapse
|
7
|
Sato T, Nagai T, Kuriki I, Nakauchi S. Dissociation of equilibrium points for color-discrimination and color-appearance mechanisms in incomplete chromatic adaptation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:A150-A163. [PMID: 26974919 DOI: 10.1364/josaa.33.00a150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We compared the color-discrimination thresholds and supra-threshold color differences (STCDs) obtained in complete chromatic adaptation (gray) and incomplete chromatic adaptation (red). The color-difference profiles were examined by evaluating the perceptual distances between various color pairs using maximum likelihood difference scaling. In the gray condition, the chromaticities corresponding with the smallest threshold and the largest color difference were almost identical. In contrast, in the red condition, they were dissociated. The peaks of the sensitivity functions derived from the color-discrimination thresholds and STCDs along the L-M axis were systematically different between the adaptation conditions. These results suggest that the color signals involved in color discrimination and STCD tasks are controlled by separate mechanisms with different characteristic properties.
Collapse
|
8
|
Tsai TI, Atorf J, Neitz M, Neitz J, Kremers J. Rod- and cone-driven responses in mice expressing human L-cone pigment. J Neurophysiol 2015; 114:2230-41. [PMID: 26245314 DOI: 10.1152/jn.00188.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
The mouse is commonly used for studying retinal processing, primarily because it is amenable to genetic manipulation. To accurately study photoreceptor driven signals in the healthy and diseased retina, it is of great importance to isolate the responses of single photoreceptor types. This is not easily achieved in mice because of the strong overlap of rod and M-cone absorption spectra (i.e., maxima at 498 and 508 nm, respectively). With a newly developed mouse model (Opn1lw(LIAIS)) expressing a variant of the human L-cone pigment (561 nm) instead of the mouse M-opsin, the absorption spectra are substantially separated, allowing retinal physiology to be studied using silent substitution stimuli. Unlike conventional chromatic isolation methods, this spectral compensation approach can isolate single photoreceptor subtypes without changing the retinal adaptation. We measured flicker electroretinograms in these mutants under ketamine-xylazine sedation with double silent substitution (silent S-cone and either rod or M/L-cones) and obtained robust responses for both rods and (L-)cones. Small signals were yielded in wild-type mice, whereas heterozygotes exhibited responses that were generally intermediate to both. Fundamental response amplitudes and phase behaviors (as a function of temporal frequency) in all genotypes were largely similar. Surprisingly, isolated (L-)cone and rod response properties in the mutant strain were alike. Thus the LIAIS mouse warrants a more comprehensive in vivo assessment of photoreceptor subtype-specific physiology, because it overcomes the hindrance of overlapping spectral sensitivities present in the normal mouse.
Collapse
Affiliation(s)
- Tina I Tsai
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maureen Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jay Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Anatomy II, University of Erlangen-Nürnberg, Germany; and School of Optometry and Vision Science, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
9
|
Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol 2015; 5:1594. [PMID: 25657632 PMCID: PMC4302711 DOI: 10.3389/fpsyg.2014.01594] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/28/2014] [Indexed: 11/21/2022] Open
Abstract
Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.
Collapse
Affiliation(s)
- Andrew J. Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
10
|
Cao D, Lu YH. Chromatic discrimination: differential contributions from two adapting fields. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:A1-9. [PMID: 22330364 PMCID: PMC3319031 DOI: 10.1364/josaa.29.0000a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To test whether a retinal or cortical mechanism sums contributions from two adapting fields to chromatic discrimination, L/M discrimination was measured with a test annulus surrounded by an inner circular field and an outer rectangular field. A retinal summation mechanism predicted that the discrimination pattern would not change with a change in the fixation location. Therefore, the fixation was set either in the inner or the outer field in two experiments. When one of the adapting fields was "red" and the other was "green," the adapting field where the observer fixated always had a stronger influence on chromatic discrimination. However, when one adapting field was "white" and the other was red or green, the white field always weighted more heavily than the other adapting field in determining discrimination thresholds, whether the white field or the fixation was in the inner or outer adapting field. These results suggest that a cortical mechanism determines the relative contributions from different adapting fields.
Collapse
Affiliation(s)
- Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 West Taylor Street, Room 149, Chicago, Illinois 60615, USA.
| | | |
Collapse
|
11
|
Magnocellular and parvocellular pathway mediated luminance contrast discrimination in amblyopia. Vision Res 2010; 50:969-76. [PMID: 20211198 DOI: 10.1016/j.visres.2010.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
Abstract
To evaluate whether luminance contrast discrimination losses in amblyopia on putative magnocellular (MC) and parvocellular (PC) pathway tasks reflect deficits at retinogeniculate or cortical sites. Fifteen amblyopes including six anisometropes, seven strabismics, two mixed and 12 age-matched controls were investigated. Contrast discrimination was measured using established psychophysical procedures that differentiate MC and PC processing. Data were described with a model of the contrast response of primate retinal ganglion cells. All amblyopes and controls displayed the same contrast signatures on the MC and PC tasks, with three strabismics having reduced sensitivity. Amblyopic PC contrast gain was similar to electrophysiological estimates from visually normal, non-human primates. Sensitivity losses evident in a subset of the amblyopes reflect cortical summation deficits, with no change in retinogeniculate contrast responses. The data do not support the proposal that amblyopic contrast sensitivity losses on MC and PC tasks reflect retinogeniculate deficits, but rather are due to anomalous post-retinogeniculate cortical processing of retinal signals.
Collapse
|
12
|
Rod and S-cone driven ERG signals at high retinal illuminances. Doc Ophthalmol 2008; 118:205-16. [PMID: 19101744 DOI: 10.1007/s10633-008-9159-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 12/01/2008] [Indexed: 11/27/2022]
Abstract
The purpose of the present study was to investigate whether L- and M-cone driven responses can be influenced by concomitant modulation in the rods or the S-cones. In addition, it was studied whether a change in the state of adaptation in L- or M-cones can have a different influence on ERG data when simultaneously the mean number of photoisomerizations in either rods or S-cones is altered. It was found that rods and/or S-cones cannot be neglected when measuring L- or M-cone driven ERGs.
Collapse
|
13
|
Linhares JMM, Pinto PD, Nascimento SMC. The number of discernible colors in natural scenes. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2008; 25:2918-24. [PMID: 19037381 DOI: 10.1364/josaa.25.002918] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The number of colors discernible by normal trichromats has been estimated for the idealized object-color solid. How well these estimates apply to natural scenes is an open question, as it is unknown how much their colors approach the theoretical limits. The aim of this work was to estimate the number of discernible colors based on a database of hyperspectral images of 50 natural scenes. The color volume of each scene was computed in the CIELAB color space and was analyzed using the CIEDE2000 color-difference formula. It was found that the color volume of the set of natural scenes was about 30% of the theoretical maximum for the full object-color solid, and it corresponded to a number of about 2.3 million discernible colors. Moreover, when the lightness dimension was ignored, only about 26,000 (1%) could be perceived as different colors. These results suggest that natural stimuli may be more constrained than expected from the analysis of the theoretical limits.
Collapse
|
14
|
Abstract
In the natural environment, color discriminations are made within a rich context of spatial and temporal variation. In classical laboratory methods for studying chromatic discrimination, there is typically a border between the test and adapting fields that introduces a spatial chromatic contrast signal. Typically, the roles of spatial and temporal contrast on chromatic discrimination are not assessed in the laboratory approach. In this study, S-cone discrimination was measured using stimulus paradigms that controlled the level of spatio-temporal S-cone contrast between the tests and adapting fields. The results indicate that S-cone discrimination of chromaticity differences between a pedestal and adapting surround is equivalent for stimuli containing spatial, temporal or spatial-and-temporal chromatic contrast between the test field and the surround. For a stimulus condition that did not contain spatial or temporal contrast, the visual system adapted to the pedestal instead of the surround. The data are interpreted in terms of a model consistent with primate koniocellular pathway physiology. The paradigms provide an approach for studying the effects of spatial and temporal contrast on discrimination in natural scenes.
Collapse
|
15
|
Chromatic discrimination in the presence of incremental and decremental rod pedestals. Vis Neurosci 2008; 25:399-404. [DOI: 10.1017/s0952523808080425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signals from rods can alter chromatic discrimination. Here, chromatic discrimination ellipses were determined in the presence of rod incremental and decremental pedestals at mesopic light levels. The data were represented in a relative cone Troland space, normalized by discrimination thresholds measured along the cardinal axes without a rod pedestal. In the quadrant of cone space where L-cone relative to M-cone excitation increased, and S-cone excitation decreased, rod incremental pedestals degraded chromatic discrimination, and rod decremental pedestals improved chromatic discrimination. Discrimination in the other three quadrants of cone space was unaffected by the incremental or decremental rod pedestals. A second experiment measured chromatic discrimination under conditions where cone pedestals were matched to the appearances of the incremental and decremental rod pedestals. Based on the matching pedestal data, discrimination then could be measured independently along the cardinal axes using either chromatic [L/(L + M); S/(L + M)] or luminance (L + M) pedestal components. The discrimination data altered by the rod pedestals were similar to chromatic cone pedestals for L/M increment discrimination, but similar to luminance cone pedestals for S decrement discrimination. The results indicated that the rod and cone signals combined differently in determining chromatic discrimination for different post-receptoral pathways.
Collapse
|
16
|
Cao D, Pokorny J, Smith VC, Zele AJ. Rod contributions to color perception: linear with rod contrast. Vision Res 2008; 48:2586-92. [PMID: 18561973 DOI: 10.1016/j.visres.2008.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 11/29/2022]
Abstract
At mesopic light levels, an incremental change in rod activation causes changes in color appearance. In this study, we investigated how rod mediated changes in color perception varied as a function of the magnitude of the rod contrast. Rod-mediated changes in color appearance were assessed by matching them with cone-mediated color changes. A two-channel four-primary colorimeter allowed independent control of the rods and each of the L-, M- and S-cone photoreceptor types. At all light levels, rod contributions to inferred PC, KC and MC pathway mediated vision were linearly related to the rod incremental contrast. This linear relationship could be described by a model based on primate ganglion cell responses with the assumption that rod signals were conveyed via rod-cone gap junctions at mesopic light levels.
Collapse
Affiliation(s)
- Dingcai Cao
- Department of Ophthalmology & Visual Science, University of Chicago, 940 East 57th Street, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
17
|
Adaptation Mechanisms, Eccentricity Profiles, and Clinical Implementation of Red-on-White Perimetry. Optom Vis Sci 2008; 85:309-17. [DOI: 10.1097/opx.0b013e31816be9e3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|