1
|
Cheng J, Wang X, Luo C, Mao X, Qin J, Chi Y, He B, Hao Y, Niu X, Huang B, Liu L. Effects of intracellular Ca 2+ on developmental potential and ultrastructure of cryopreserved-warmed oocyte in mouse. Cryobiology 2024; 114:104834. [PMID: 38065230 DOI: 10.1016/j.cryobiol.2023.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
Maintaining appropriate intracellular calcium of oocytes is necessary to prevent ultrastructure and organelle damage caused by freezing and cryoprotectants. The present study aimed to investigate whether cryoprotectant-induced changes in the calcium concentrations of oocytes can be regulated to reduce damage to developmental potential and ultrastructure. A total of 33 mice and 1381 oocytes were used to explore the effects of intracellular calcium on the development and ultrastructures of oocytes subjected to 2-aminoethoxydiphenyl borate (2-APB) inhibition or thapsigargin (TG) stimulation. Results suggested that high levels intracellular calcium interfered with TG compromised oocyte survival (84.4 % vs. 93.4 %, p < 0.01) and blastocyst formation in fresh and cryopreservation oocytes (78.1 % vs. 86.4 %, and 60.5 % vs. 72.5 %, p < 0.05) compared with that of 2-APB pretreated oocytes in which Ca2+ was stabilized even though no differences in fertilization and cleavage was detected (p > 0.05). Examination by transmission electron microscopy indicated that the microvilli decreased and shortened, cortical granules considerably decreased in the cortex area, mitochondrial vesicles and vacuoles increased, and the proportion of vacuole mitochondria increased after oocytes were exposed to cryoprotectants. The cryopreservation-warming process deteriorated the negative effects on organelles of survival oocytes. By contrast, a low level of intracellular calcium mediated with 2-APB was supposed to contribute to the protection of organelles. These findings suggested oocyte injuries induced by cryoprotectants and low temperatures can be alleviated. More studies are necessary to confirm the relationship among Ca2+ concentration of the cytoplasm, ultrastructural injuries, and disrupted developmental potential in oocytes subjected to cryopreservation and warming.
Collapse
Affiliation(s)
- Junping Cheng
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China.
| | - Xiaoli Wang
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Chan Luo
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Xianbao Mao
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Jie Qin
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Yan Chi
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Bing He
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Yanrong Hao
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Ben Huang
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Liling Liu
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
2
|
Gordon CE, Combelles CM, Lanes A, Patel J, Racowsky C. Cumulus cell co-culture in media drops does not improve rescue in vitro maturation of vitrified-warmed immature oocytes. F&S SCIENCE 2023; 4:185-192. [PMID: 37201752 DOI: 10.1016/j.xfss.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To assess whether co-culture with vitrified-warmed cumulus cells (CCs) in media drops improves rescue in vitro maturation (IVM) of previously vitrified immature oocytes. Previous studies have shown improved rescue IVM of fresh immature oocytes when cocultured with CCs in a three-dimensional matrix. However, the scheduling and workload of embryologists would benefit from a simpler IVM approach, particularly in the setting of time-sensitive oncofertility oocyte cryopreservation (OC) cases. Although the yield of developmentally competent mature metaphase II (MII) oocytes is increased when rescue IVM is performed before cryopreservation, it is unknown whether maturation of previously vitrified immature oocytes is improved after coculture with CCs in a simple system not involving a three-dimensional matrix. DESIGN Randomized controlled trial. SETTING Academic hospital. PATIENTS A total of 320 (160 germinal vesicles [GVs] and 160 metaphase I [MI]) immature oocytes and autologous CC clumps were vitrified from patients who were undergoing planned OC or intracytoplasmic sperm injection from July 2020 until September 2021. INTERVENTIONS On warming, the oocytes were randomized to culture in IVM media with CCs (+CC) or without CCs (-CC). Germinal vesicles and MI oocytes were cultured in 25 μL (SAGE IVM medium) for 32 hours and 20-22 hours, respectively. MAIN OUTCOME MEASURES Oocytes with a polar body (MII) were randomized to confocal microscopy for analysis of spindle integrity and chromosomal alignment to assess nuclear maturity or to parthenogenetic activation to assess cytoplasmic maturity. Wilcoxon rank sum tests for continuous variables and the chi square or Fisher's exact test for categorical variables assessed statistical significance. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated. RESULTS Patient demographic characteristics were similar for both the GV and MI groups after randomization to +CC vs. -CC. No statistically significant differences were observed between +CC vs. -CC groups regarding the percentage of MII from either GV (42.5% [34/80] vs. 52.5% [42/80]; RR 0.81; 95% CI: 0.57-1.15]) or MI (76.3% [61/80]; vs. 72.5% [58/80]; RR 1.05; 95% CI: 0.88-1.26]) oocytes. An increased percentage of GV-matured MIIs underwent parthenogenetic activation in the +CC group (92.3% [12/13] vs. 70.8% [17/24]), but the difference was not statistically significant (RR 1.30; 95% CI: 0.97-1.75), whereas the activation rate was identical for MI-matured oocytes (74.3% [26/35] vs. 75.0% [18/24], CC+ vs. CC-; RR 0.99; 95% CI: 0.74-1.32). No significant differences were observed between +CC vs. -CC groups for cleavage of parthenotes from GV-matured oocytes (91.7% [11/12] vs. 82.4% [14/17]) or blastulation (0 for both) or for MI-matured oocytes (cleavage: 80.8% [21/26] vs. 94.4% [17/18]; blastulation: 0 [0/26] vs. 16.7% [3/18]). Further, no significant differences were observed between +CC vs. -CC for GV-matured oocytes regarding incidence of bipolar spindles (38.9% [7/18] vs. 33.3% [5/15]) or aligned chromosomes (22.2% [4/18] vs. 0.0 [0/15]); or for MI-matured oocytes (bipolar spindle: 38.9% [7/18] vs. 42.9% [2/28]); aligned chromosomes (35.3% [6/17] vs. 24.1% [7/29]). CONCLUSIONS Cumulus cell co-culture in this simple two-dimensional system does not improve rescue IVM of vitrified, warmed immature oocytes, at least by the markers assessed here. Further work is required to assess the efficacy of this system given its potential to provide flexibility in a busy, in vitro fertilization clinic.
Collapse
Affiliation(s)
- Catherine E Gordon
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts.
| | | | - Andrea Lanes
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Jay Patel
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Catherine Racowsky
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts; Department of Obstetrics, Gynecology and Reproductive Medicine, Hôpital Foch, Suresnes, France
| |
Collapse
|
3
|
Cui M, Zhan T, Yang J, Dang H, Yang G, Han H, Liu L, Xu Y. Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. ACS Biomater Sci Eng 2023; 9:1151-1163. [PMID: 36744931 DOI: 10.1021/acsbiomaterials.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryopreservation is currently a key step in translational medicine that could provide new ideas for clinical applications in reproductive medicine, regenerative medicine, and cell therapy. With the advantages of a low concentration of cryoprotectant, fast cooling rate, and easy operation, droplet-based printing for vitrification has received wide attention in the field of cryopreservation. This review summarizes the droplet generation, vitrification, and warming method. Droplet generation techniques such as inkjet printing, microvalve printing, and acoustic printing have been applied in the field of cryopreservation. Droplet vitrification includes direct contact with liquid nitrogen vitrification and droplet solid surface vitrification. The limitations of droplet vitrification (liquid nitrogen contamination, droplet evaporation, gas film inhibition of heat transfer, frosting) and solutions are discussed. Furthermore, a comparison of the external physical field warming method with the conventional water bath method revealed that better applications can be achieved in automated rapid warming of microdroplets. The combination of droplet vitrification technology and external physical field warming technology is expected to enable high-throughput and automated cryopreservation, which has a promising future in biomedicine and regenerative medicine.
Collapse
Affiliation(s)
- Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Jiamin Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hangyu Dang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Guoliang Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Linfeng Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| |
Collapse
|
4
|
Lima GL, Luz VB, Lunardi FO, Souza ALP, Peixoto GCX, Rodrigues APR, Oliveira MF, Santos RR, Silva AR. Effect of cryoprotectant type and concentration on the vitrification of collared peccary (Pecari tajacu) ovarian tissue. Anim Reprod Sci 2019; 205:126-133. [PMID: 31047761 DOI: 10.1016/j.anireprosci.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to establish a protocol for solid surface vitrification of peccary ovarian tissue by using different cryoprotectants. Ovarian pairs from five adult females were fragmented and two fragments (fresh control group) were immediately subjected to morphological evaluation using classical histology, transmission electron microscopy, and viability analysis using fluorescent probes. The remaining fragments (n = 18) were vitrified using a solid surface method with different concentrations (3 or 6 M) of ethylene glycol (EG), dimethyl sulfoxide (DMSO) or dimethyl formamide (DMF). After 2 weeks, samples were re-warmed and evaluated. A decrease in the percentage of morphologically normal preantral follicles (PFs) was verified for all the groups in comparison to the fresh control (92.0 ± 2.8%); however, if only the primordial follicles are considered, the most effective preservation (P < 0.05) was achieved with the use of EG at 3 M (74.2±7.3%) or DMSO at 6 M (75.0 ± 4.2%). Ultrastructural analysis indicated there were well-preserved PFs in all the groups evaluated, having well-defined membranes, a few vacuoles, and organelles that were uniformly distributed throughout the cytoplasm, mainly round and elongated mitochondria in close association with lipid droplets. Viability was preserved (P < 0.05) with the use of EG at 3 (97%) or 6 (97%) M, DMSO at 3 (100%), and DMF at 6 (97%) M. Solid surface vitrification, therefore, is an effective method for conservation of peccary female germplasm, especially with the use of EG at 3 M, which was highly effective for preservation of both the morphology and viability of PFs.
Collapse
Affiliation(s)
- Gabriela L Lima
- Laboratory on Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido - UFERSA, BR 110, Km 47, Costa e Silva, 59625-900, Mossoró, RN, Brazil
| | - Valesca B Luz
- Laboratory on Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido - UFERSA, BR 110, Km 47, Costa e Silva, 59625-900, Mossoró, RN, Brazil
| | - Franciele O Lunardi
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Universidade Estadual do Ceará - UECE, Paranjana Ave, 1700, Itaperi, 60740-000, Fortaleza, CE, Brazil
| | - Ana L P Souza
- Laboratory on Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido - UFERSA, BR 110, Km 47, Costa e Silva, 59625-900, Mossoró, RN, Brazil
| | - Gislayne C X Peixoto
- Laboratory on Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido - UFERSA, BR 110, Km 47, Costa e Silva, 59625-900, Mossoró, RN, Brazil
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Universidade Estadual do Ceará - UECE, Paranjana Ave, 1700, Itaperi, 60740-000, Fortaleza, CE, Brazil
| | - Moacir F Oliveira
- Laboratory on Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido - UFERSA, BR 110, Km 47, Costa e Silva, 59625-900, Mossoró, RN, Brazil
| | - Regiane R Santos
- Laboratory of Wild Animal Biology and Medicine, Faculty of Veterinary Medicine, Federal University of Pará, Belém, Pará, Brazil; Schothorst Feed Research, the Netherlands
| | - Alexandre R Silva
- Laboratory on Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido - UFERSA, BR 110, Km 47, Costa e Silva, 59625-900, Mossoró, RN, Brazil.
| |
Collapse
|
5
|
Quan G, Wu G, Hong Q. Oocyte Cryopreservation Based in Sheep: The Current Status and Future Perspective. Biopreserv Biobank 2017; 15:535-547. [DOI: 10.1089/bio.2017.0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Guobo Quan
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Guoquan Wu
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Qionghua Hong
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| |
Collapse
|
6
|
Gao HH, Li JT, Liu JJ, Yang QA, Zhang JM. Autophagy inhibition of immature oocytes during vitrification-warming and in vitro mature activates apoptosis via caspase-9 and -12 pathway. Eur J Obstet Gynecol Reprod Biol 2017; 217:89-93. [PMID: 28863387 DOI: 10.1016/j.ejogrb.2017.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to determine the role of autophagy in the immature oocytes during vitrification-warming and in vitro maturation (IVM); the correlations among autophagy, apoptosis, and the activities of caspase in the immature oocytes during vitrification-warming and IVM were also explored. STUDY DESIGN Immature oocytes from mice were vitrified-warmed and IVM. An autophagy inhibitor (3-methyladenine) was supplemented in cryopreservation solutions and warming solutions. The expression of beclin-1 (an autophagy marker), caspase-3, -8, -9, and -12 were measured. Moreover, the viability of vitrified-warmed immature oocytes and their subsequent developmental competence were measured. RESULTS The levels of beclin-1 expression in both mRNA and protein in oocytes experienced vitrification-warming and IVM were significantly higher than that in fresh immature oocytes experienced IVM. The levels of caspase-3, -9, -12 expression in both mRNA and protein in oocytes vitrified with 3-methyladenine were significantly higher than that vitrified without 3-methyladenine. However, the differences in the caspase-8 expression in both mRNA and protein between the oocytes vitrified with 3-methyladenine and that vitrified without 3-methyladenine were not significant. CONCLUSION Immature oocyte cryopreservation exhibits autophagic activation. Autophagy inhibition of the immature oocytes during vitrification-warming and IVM activates apoptosis via caspase-9 and -12 pathway.
Collapse
Affiliation(s)
- Hai-Hua Gao
- Center for Reproductive Medicine, Hospital for Maternity and Child Care of Linyi City, Linyi, China
| | - Jun-Tao Li
- Department of Reproductive Medicine, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Jing-Jing Liu
- Hospital affiliated to Institute of Traditional Chinese Medicine & Materia Medica, Jinan, China
| | - Qing-Ai Yang
- School of Nursing, Shandong Xiehe University, Jinan, China
| | - Jian-Min Zhang
- School of Nursing, Shandong Xiehe University, Jinan, China.
| |
Collapse
|
7
|
Khalili MA, Shahedi A, Ashourzadeh S, Nottola SA, Macchiarelli G, Palmerini MG. Vitrification of human immature oocytes before and after in vitro maturation: a review. J Assist Reprod Genet 2017; 34:1413-1426. [PMID: 28822010 DOI: 10.1007/s10815-017-1005-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
The use of immature oocytes subjected to in vitro maturation (IVM) opens interesting perspectives for fertility preservation where ovarian reserves are damaged by pathologies or therapies, as in PCO/PCOS and cancer patients. Human oocyte cryopreservation may offer some advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation and postponing childbirth. It also eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In addition, a successful oocyte cryopreservation program could eliminate the need for donor and recipient menstrual cycle synchronization. Recent advances in vitrification technology have markedly improved the oocyte survival rate after warming, with fertilization and implantation rates comparable with those of fresh oocytes. Healthy live births can be achieved from the combination of IVM and vitrification, even if vitrification of in vivo matured oocytes is still more effective. Recently, attention is given to highlight whether vitrification procedures are more successful when performed before or after IVM, on immature GV-stage oocytes, or on in vitro matured MII-stage oocytes. In this review, we emphasize that, even if there are no differences in survival rates between oocytes vitrified prior to or post-IVM, reduced maturation rates of immature oocytes vitrified prior to IVM can be, at least in part, explained by underlying ultrastructural and biomolecular alterations.
Collapse
Affiliation(s)
- Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sareh Ashourzadeh
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, University of Rome La Sapienza, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
8
|
Sprícigo JFW, Sena Netto SB, Muterlle CV, Rodrigues SDAD, Leme LO, Guimarães AL, Caixeta FMC, Franco MM, Pivato I, Dode MAN. Intrafollicular transfer of fresh and vitrified immature bovine oocytes. Theriogenology 2016; 86:2054-62. [PMID: 27523724 DOI: 10.1016/j.theriogenology.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Embryo production by intrafollicular oocyte transfer (IFOT) represents an alternative for production of a large number of embryos without requiring any hormones and only basic laboratory handling. We aimed to (1) evaluate the efficiency of IFOT using immature oocytes (IFIOT) and (2) compare embryo development after IFIOT using fresh or vitrified immature oocytes. First, six IFIOTs were performed using immature oocytes obtained by ovum pickup. After insemination and uterine flush for embryo recovery, 21.3% of total transferred structures were recovered excluding the recipient's own oocyte or embryo, and of those, 26% (5.5% of transferred cumulus-oocyte complexes [COCs]) were morula or blastocyst. In the second study, we compared fresh and vitrified-warmed immature COCs. Four groups were used: (1) fresh immature COCs (Fresh-Vitro); (2) vitrified immature COCs (Vit-Vitro), with both groups 1 and 2 being matured, fertilized, and cultured in vitro; (3) fresh immature COCs submitted to IFIOT (Fresh-IFIOT); and (4) vitrified immature COCs submitted to IFIOT (Vit-IFIOT). Cumulus-oocyte complexes (n = 25) from Fresh-IFIOT or Vit-IFIOT groups were injected into dominant follicles (>10 mm) of synchronized heifers. After excluding one structure or blastocyst, the recovery rates per transferred oocyte were higher (P < 0.05) for Fresh-IFIOT (47.6%) than for Vit-IFIOT (12.0%). Blastocyst yield per initial oocyte was higher (P < 0.05) for Fresh-Vitro (42.1%) than for Fresh-IFIOT (12.9%). Vit-Vitro presented higher (P < 0.05) embryo development (6.3%), compared to Vit-IFIOT, which did not result in any extra embryo. Although IFOT did not improve developmental competence of vitrified oocytes, we achieved viable blastocysts and pregnancies produced after IFIOT of fresh bovine immature oocytes. Further work on this technique is warranted as an option both for research studies and for clinical bovine embryo production in the absence of laboratory facilities for IVF.
Collapse
Affiliation(s)
- José Felipe W Sprícigo
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília-DF, Brazil
| | | | | | | | - Ligiane Oliveira Leme
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília-DF, Brazil
| | - Ana Luiza Guimarães
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília-DF, Brazil
| | | | - Maurício Machain Franco
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Brasília-DF, Brazil
| | - Ivo Pivato
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília-DF, Brazil
| | - Margot Alves Nunes Dode
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília-DF, Brazil; Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Brasília-DF, Brazil.
| |
Collapse
|
9
|
Palmerini MG, Nottola SA, Leoni GG, Succu S, Borshi X, Berlinguer F, Naitana S, Bekmukhambetov Y, Macchiarelli G. In vitro maturation is slowed in prepubertal lamb oocytes: ultrastructural evidences. Reprod Biol Endocrinol 2014; 12:115. [PMID: 25421574 PMCID: PMC4247763 DOI: 10.1186/1477-7827-12-115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vitro maturation (IVM) of immature oocytes retrieved from unstimulated ovaries may avoid side effects connected to hyperstimulation during IVF procedures, including the risk of cancer recurrence. In humans, the scarce availability of immature oocytes limits morphological studies. The monovular ovine may represent an experimental model for IVM studies. METHODS To assess if the scarce developmental competence of prepubertal oocytes (PO) is related to morphological changes we analyzed, by light and transmission electron microscopy, cumulus-oocyte-complexes (COCs) from lambs (30-40 days old) and sheep (4-6 years old) at sampling and after 7 h, 19 h, 24 h of IVM. Meiotic progression was determined at the same time points. RESULTS At sampling, the germinal vesicle (GV) of PO was round and centrally or slightly eccentrically located, whereas in adult oocytes (AO) it was irregularly shaped and flattened against the oolemma. PO, differently from AO, showed numerous trans-zonal projections. Organelles, including cortical granules (CGs), were more abundant in AO. After 7 h, the percentage of AO that underwent GVBD-MI transition increased significantly. In PO, the oolemma was juxtaposed to the ZP; in AO, it showed several spikes in correspondence of cumulus cells (CC) endings. In PO, organelles and isolated CGs were scattered in the ooplasm. In AO, groups of CGs were also present under the oolemma. After 19 h, PO underwent GVBD-MI transition; their oolemma showed several spikes, with CC projections retracted and detached from the ZP. AO underwent MI-MII transition; their oolemma regained a round shape. CGs were located beneath the plasmalemma, arranged in multiple, continuous layers, sometime discontinuous in PO. After 24 h, both groups reached the MII-stage, characterized by a regular oolemma and by expanded CCs. PO showed CGs distributed discontinuously beneath the oolemma, while AO showed a continuous monolayer of CGs. CONCLUSIONS Even if PO were able of reaching morphological maturation after 24 h of IVM, our ultrastructural analysis allowed detecting the presumptive sequence of cytoplasmic alterations connected with the delay of nuclear maturation, that might explain the reduced developmental competence of such oocytes. Data from the sheep model are of interest for zootechny, and provide an experimental basis for improving human IVM technology.
Collapse
Affiliation(s)
- Maria G Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Stefania A Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| | - Giovanni G Leoni
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Sara Succu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Xhejni Borshi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Catholic University “Our Lady of Good Counsel” Faculty of Pharmacy, Tirana, Albania
| | | | - Salvatore Naitana
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
10
|
Palmerini MG, Antinori M, Maione M, Cerusico F, Versaci C, Nottola SA, Macchiarelli G, Khalili MA, Antinori S. Ultrastructure of immature and mature human oocytes after cryotop vitrification. J Reprod Dev 2014; 60:411-20. [PMID: 25168087 PMCID: PMC4284314 DOI: 10.1262/jrd.2014-027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In vitro maturation of vitrified immature germinal vesicle (GV) oocytes is a promising fertility preservation option. We analyzed the ultrastructure of human GV oocytes after Cryotop vitrification (GVv) and compared it with fresh GV (GVc), fresh mature metaphase II (MIIc) and Cryotop-vitrified mature (MIIv) oocytes. By phase contrast microscopy and light microscopy, the oolemmal and cytoplasmic organization of fresh and vitrified oocytes did not show significant changes. GVv oocytes showed significant ultrastructural alterations of the microvilli in 40% of the samples; small vacuoles and occasional large/isolated vacuoles were abnormally present in the ooplasm periphery of 50% of samples. The ultrastructure of nuclei and mitochondria-vesicle (MV) complexes, as well as the distribution and characteristics of cortical granules (CGs), were comparable with those of GVc oocytes. MIIv oocytes showed an abnormal ultrastructure of microvilli in 30% of the
samples and isolated large vacuoles in 70% of the samples. MV complexes were normal, but mitochondria-smooth endoplasmic reticulum aggregates appeared to be of reduced size. CGs were normally located under the oolemma but presented abnormalities in distribution and matrix electron density. In conclusion, Cryotop vitrification preserved main oocyte characteristics in the GV and MII stages, even if peculiar ultrastructural alterations appeared in both stages. This study also showed that the GV stage appears more suitable for vitrification than the MII stage, as indicated by the good ultrastructural preservation of important structures that are present only in immature oocytes, like the nucleus and migrating CGs.
Collapse
Affiliation(s)
- Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dalcin L, Silva RC, Paulini F, Silva BDM, Neves JP, Lucci CM. Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology 2013; 67:137-45. [PMID: 23770514 DOI: 10.1016/j.cryobiol.2013.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 01/22/2023]
Abstract
Even though sheep embryo cryopreservation is a commonly used procedure the survival and pregnancy outcomes can vary greatly. This study investigated whether cryopreservation was causing subtle changes in ultrastructure, mitochondrial activity or cytoskeletal integrity. Sheep embryos were either slow cooled in 1.5 M EG (n = 22), or vitrified in 20% EG + 20% DMSO with 0.5 M sucrose in Open Pulled Straws (OPS) (n = 24). One hour after warming the cryopreserved embryos differed from control embryos in that they had no mitochondrial activity combined with cytoskeletal disorganization and large vesicles. Vitrified embryos also showed many points of cytoskeleton disruption. Ultrastructural alterations resulting from actin filaments disorganization were observed in both cryopreserved groups. This includes areas presenting no cytoplasmic organelles, Golgi complex located far from the nucleus and a decrease of specialized intercellular junctions. Additionally, large vesicles were observed in vitrified morulae and early blastocysts. The alterations after cryopreservation were proportional to embryo quality as assessed using the stereomicroscope. Even in the absence of mitochondrial activity, grade I and II cryopreserved embryos contained mitochondria with normal ultrastructure. Embryos classified as grade I or II in the stereomicroscope revealed mild ultrastructural alterations, meaning that this tool is efficient to evaluate embryos after cryopreservation.
Collapse
Affiliation(s)
- Luciana Dalcin
- Faculty of Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | | | | | | | | | | |
Collapse
|