1
|
Ooga M. Chromatin structure in totipotent mouse early preimplantation embryos. J Reprod Dev 2024; 70:152-159. [PMID: 38462486 PMCID: PMC11153117 DOI: 10.1262/jrd.2023-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
2
|
Ooga M, Kikuchi Y, Ito D, Kazama K, Inoue R, Sakamoto M, Wakayama S, Wakayama T. Aberrant histone methylation in mouse early preimplantation embryos derived from round spermatid injection. Biochem Biophys Res Commun 2023; 680:119-126. [PMID: 37738901 DOI: 10.1016/j.bbrc.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Round spermatid injection (ROSI) is the last resort and recourse for men with nonobstructive azoospermia to become biological fathers of their children. However, the ROSI-derived offspring rate is lower than intracytoplasmic sperm injection (ICSI) in mice (20% vs. 60%). This low success rate has hindered the spread of ROSI in ART (Assisted Reproductive Technology). However, the cause of the ROSI-zygote-derived low offspring rate is currently unknown. In the previous studies, we reported that H3K9me3 and H3K27me3 exhibited ectopic localizations in male pronuclei (mPN) of ROSI-zygotes, suggesting that the carried over histone to zygotes conveys epigenetic information. In this study, we analyzed other histone modifications to explore unknown abnormalities. H3K36me3 showed an increased methylation state compared to ICSI-derived embryos but not for H3K4me3. Abnormal H3K36me3 was corrected until 2-cell stage embryos, suggesting a long window of reprogramming ability in ROSI-embryos. Treatment with TSA of ROSI-zygotes, which was reported to be capable of correcting ectopic DNA methylation in ROSI-zygotes, caused abnormalities of H3K36me3 in male and female PN (fPN) of the zygotes. In contrast, round spermatid TSA treatment before ROSI, which was reported to improve the preimplantation development of ROSI-zygotes, showed beneficial effects without toxicity in fPN. Therefore, the results suggest that TSA has some negative effects, but overall, it is effective in the correction of epigenetic abnormalities in ROSI-zygotes. When attempting to correct epigenetic abnormalities, attention should be paid to epigenomes not only in male but also in female pronuclei.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan.
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Rei Inoue
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
3
|
Palta P, Selokar NL, Chauhan MS. Production of Water Buffalo SCNT Embryos by Handmade Cloning. Methods Mol Biol 2023; 2647:245-258. [PMID: 37041339 DOI: 10.1007/978-1-0716-3064-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Cloning by somatic cell nuclear transfer (SCNT) involves the transfer of a somatic nucleus into an enucleated oocyte followed by chemical activation and embryo culture. Further, handmade cloning (HMC) is a simple and efficient SCNT method for large-scale embryo production. HMC does not require micromanipulators for oocyte enucleation and reconstruction since these steps are carried out using a sharp blade controlled by hand under a stereomicroscope. In this chapter, we review the status of HMC in the water buffalo (Bubalus bubalis) and further describe a protocol for the production of buffalo-cloned embryos by HMC and assays to estimate their quality.
Collapse
Affiliation(s)
- Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Naresh L Selokar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Manmohan S Chauhan
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
4
|
Sakamoto M, Ito D, Inoue R, Wakayama S, Kikuchi Y, Yang L, Hayashi E, Emura R, Shiura H, Kohda T, Namekawa SH, Ishiuchi T, Wakayama T, Ooga M. Paternally inherited H3K27me3 affects chromatin accessibility in mouse embryos produced by round spermatid injection. Development 2022; 149:276384. [DOI: 10.1242/dev.200696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Daiyu Ito
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rei Inoue
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Yasuyuki Kikuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Li Yang
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Erika Hayashi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rina Emura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Hirosuke Shiura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Takashi Kohda
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Satoshi H. Namekawa
- University of California Davis 3 Department of Microbiology and Molecular Genetics , , Davis, CA 95616 , USA
| | - Takashi Ishiuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Masatoshi Ooga
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| |
Collapse
|
5
|
Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Since the announcement of the birth of the first cloned mammal in 1997, Dolly the sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.
Collapse
|
6
|
Liu Y, Li Y, Hou R, Cai Z, Wang D, Chen J, Li F, Chen Y, An J. Isolation, culture, and characterization of cells derived from giant panda (Ailuropoda melanoleuca) semen. In Vitro Cell Dev Biol Anim 2021; 57:381-385. [PMID: 33928488 DOI: 10.1007/s11626-021-00579-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Yuliang Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China.,Sichuan Academy of Giant Panda, Province, Chengdu, 610000, Sichuan, China
| | - Yuan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China.,Sichuan Academy of Giant Panda, Province, Chengdu, 610000, Sichuan, China
| | - Zhigang Cai
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China.,Sichuan Academy of Giant Panda, Province, Chengdu, 610000, Sichuan, China
| | - Donghui Wang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China.,Sichuan Academy of Giant Panda, Province, Chengdu, 610000, Sichuan, China
| | - Jiasong Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China
| | - Feiping Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China
| | - Yijiao Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China.,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China
| | - Junhui An
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Province, Chengdu, 610081, Sichuan, China. .,Chengdu Research Base of Giant Panda Breeding, Province, Chengdu, 610081, Sichuan, China. .,Sichuan Academy of Giant Panda, Province, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
7
|
Sood TJ, Lagah SV, Mukesh M, Singla SK, Chauhan MS, Manik RS, Palta P. RNA sequencing and transcriptome analysis of buffalo (
Bubalus bubalis
) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol Reprod Dev 2019; 86:1149-1167. [DOI: 10.1002/mrd.23233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tanushri Jerath Sood
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Swati Viviyan Lagah
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Manishi Mukesh
- Animal Biotechnology DivisionICAR‐National Bureau of Animal Genetic ResourcesKarnal Haryana India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Radhey Sham Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| |
Collapse
|
8
|
Hinrichs K. Assisted reproductive techniques in mares. Reprod Domest Anim 2018; 53 Suppl 2:4-13. [DOI: 10.1111/rda.13259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology; College of Veterinary Medicine & Biomedical Sciences; Texas A&M University; College Station Texas
| |
Collapse
|
9
|
Brom-de-Luna JG, Canesin HS, Wright G, Hinrichs K. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting. Anim Reprod Sci 2018; 190:10-17. [DOI: 10.1016/j.anireprosci.2017.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 11/26/2022]
|