1
|
de Souza AP, Bastos AP, da Fonseca FN, Pandolfi JR, Costamilan CADVLR, Marques MG. Polyethyleneimine-mediated gene transfection in porcine fetal fibroblasts. Anim Reprod 2024; 21:e20240026. [PMID: 39629009 PMCID: PMC11614137 DOI: 10.1590/1984-3143-ar2024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 12/06/2024] Open
Abstract
Polyethylenimine (PEI) has been explored as an efficient non-viral system for delivering genes to cells; however, there were no protocols for its use in porcine fetal fibroblasts (PFF). Therefore, we compared different concentrations of FITC-PEI (0.625, 1.25, 2.5, 5, 10, 20, 40, or 80 µg/mL) and incubation times (30 min, 1 h, or 2 h). It was observed that the incubation time did not affect the internalization of the PEI-FITC and that 30 min was sufficient to capture the complex. The concentrations higher than 10 µg/mL could reach many marked PFF (>90%). Then, two PEI concentrations were tested, 10 or 40 µg/mL, combined with an N/P of 2 with the pmhyGENIE-5 for 30 min. The percentage of PFF-GFP positive was similar between the PEI concentrations in the evaluation time points (24 h, 48 h, and 72 h). However, 40 µg/mL caused higher membrane damage rates. Thus, it can be concluded that concentrations between 10 - 80 µg/ml of PEI promote high incorporation rates, even in periods as short as 30 minutes. Furthermore, it can be stated that the transfection condition used in Polyplexes 1 (10 µg/mL of PEI and 37.5 µg/mL of pmhyGENIE-5 for 30 min) efficiently produces genetically edited porcine fetal fibroblasts with low cell damage.
Collapse
Affiliation(s)
| | - Ana Paula Bastos
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Suínos e Aves, Concórdia, SC, Brasil
| | | | - José Rodrigo Pandolfi
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Suínos e Aves, Concórdia, SC, Brasil
| | | | - Mariana Groke Marques
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Suínos e Aves, Concórdia, SC, Brasil
- Pós-Graduação em Produção e Sanidade Animal, Instituto Federal Catarinense, Concórdia, SC, Brasil
| |
Collapse
|
2
|
Dos Santos da Silva L, Borges Domingues W, Fagundes Barreto B, da Silveira Martins AW, Dellagostin EN, Komninou ER, Corcini CD, Varela Junior AS, Campos VF. Capillary electroporation affects the expression of miRNA-122-5p from bull sperm cells. Gene 2020; 768:145286. [PMID: 33144270 DOI: 10.1016/j.gene.2020.145286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023]
Abstract
Sperm-mediated gene transfer (SMGT) has a potential application in the generation of transgenic animals. Capillary electroporation consists of the application of electrical pulses, resulting in an increased transfection rate. Little is known about the impacts of the transfection of exogenous DNA on sperm epigenetics. MicroRNAs are epigenetic factors that are related to sperm motility. MiRNA-122-5p regulates genes that influence motility, and consequently, the fertilizing potential of sperm. Therefore, we aimed at identifying whether epigenetic factors such as microRNAs could be altered after DNA transfection, using the capillary electroporation technique. In this study, bull sperm was electroporated using voltages of 600 V, 1500 V, and 0 V (control group), with or without exogenous DNA. Parameters of sperm quality were analyzed using CASA and flow cytometry, and expression of the miRNA-122-5p was analyzed using RT-qPCR. It was observed that electroporation increased the internalization of exogenous DNA (P < 0.05), but did not impair the mitochondrial activity (P > 0.05). It reduced sperm motility (P < 0.05). The expression of miRNA-122-5p was upregulated in sperm electroporated at 1500 V, and the presence of exogenous DNA did not affect its expression. Thus, we can conclude that electroporation influences the expression of miRNA-122-5p from bull sperm cells.
Collapse
Affiliation(s)
- Lucas Dos Santos da Silva
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna Fagundes Barreto
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Weege da Silveira Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Nunes Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza Rossi Komninou
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carine D Corcini
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antônio Sergio Varela Junior
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil; Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Daneluz LO, Acosta IB, Nunes LS, Blodorn EB, Domingues WB, Martins AWS, Dellagostin EN, Rassier GT, Corcini CD, Fróes CN, Komninou ER, Varela AS, Campos VF. Efficiency and cell viability implications using tip type electroporation in zebrafish sperm cells. Mol Biol Rep 2020; 47:5879-5887. [PMID: 32661869 PMCID: PMC7356131 DOI: 10.1007/s11033-020-05658-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Sperm-mediated gene transfer (SMGT) has a potential use for zebrafish transgenesis. However, transfection into fish sperm cells still needs to be improved. The objective was to demonstrate the feasibility of tip type electroporation in zebrafish sperm, showing a protocol that provide high transfection efficiency, with minimal side-effects. Sperm was transfected with a Cy3-labelled DNA using tip type electroporation with voltages ranging from 500 to 1500 V. Sperm kinetics parameters were assessed using Computer Assisted Semen Analysis (CASA) and cell integrity, reactive oxygen species (ROS), mitochondrial functionality and transfection rate were evaluated by flow cytometry. The transfection rates were positively affected by tip type electroporation, reaching 64.9% ± 3.6 in the lowest voltage used (500 V) and 86.6% ± 1.9 in the highest (1500 V). The percentage of overall motile sperm in the electrotransfected samples was found to decrease with increasing field strength (P < 0.05). Increase in the sperm damaged plasma membrane was observed with increasing field strength (P < 0.05). ROS and sperm mitochondrial functionality did not present a negative response after the electroporation (P > 0.05). Overall results indicate that tip type electroporation enhances the internalization of exogenous DNA into zebrafish sperm cells with minimal harmful effects to sperm cells.
Collapse
Affiliation(s)
- Larissa O Daneluz
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Izani B Acosta
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Leandro S Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo B Blodorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda W S Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo N Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Gabriela T Rassier
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carine D Corcini
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Charles N Fróes
- Laboratório de Ictiologia, Faculdade de Zootecnia - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza R Komninou
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antônio S Varela
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
Wang W, Liang K, Chang Y, Ran M, Zhang Y, Ali MA, Dai D, Qazi IH, Zhang M, Zhou G, Yang J, Angel C, Zeng C. miR-26a is Involved in Glycometabolism and Affects Boar Sperm Viability by Targeting PDHX. Cells 2020; 9:E146. [PMID: 31936222 PMCID: PMC7016825 DOI: 10.3390/cells9010146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
miR-26a is associated with sperm metabolism and can affect sperm motility and apoptosis. However, how miR-26a affects sperm motility remains largely unknown. Our previous study indicated that the PDHX gene is predicted to be a potential target of miR-26a, which is responsible for pyruvate oxidative decarboxylation which is considered as a key step for connecting glycolysis with oxidative phosphorylation. In this study, we first reported a potential relationship between miR-26a and PDHX and their expressions in fresh, frozen-thawed, and epididymal boar sperm. Then, sperm viability and survival were determined after transfection of miR-26a. mRNA and protein expression level of PDHX in the liquid-preserved boar sperm after transfection were also determined by RT-qPCR and Western Blot (WB). Our results showed that expression level of PDHX was significantly increased during sperm transit from epididymal caput to corpus and cauda. Similarly, expression of PDHX was significantly higher (P < 0.05) in fresh sperm as compared to epididymal cauda and frozen-thawed sperm. However, the expression of miR-26a in epididymal corpus sperm was significantly higher (P < 0.05) than that of caput and cauda sperm. Furthermore, after transfection of boar sperm with miR-26a mimic and inhibitor under liquid storage, the lowest and highest sperm viability was observed in miR-26a mimic and inhibitor treatment (P < 0.05), respectively. The protein levels of PDHX, after 24 and 48 h of transfection of miR-26a mimics and inhibitor, were notably decreased and increased (P < 0.05), respectively, as compared to negative control (NC) group. In conclusion, the novel and enticing findings of our study provide a reasonable evidence that miR-26a via PDHX, a link between glycolysis and oxidative phosphorylation, could regulate the glycometabolic pathway which eventually affect boar sperm viability and survival.
Collapse
Affiliation(s)
- Wencan Wang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Kai Liang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Yu Chang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Mingxia Ran
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Yan Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Malik Ahsan Ali
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore 54000, Pakistan
| | - Dinghui Dai
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Guangbin Zhou
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Jiandong Yang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Christiana Angel
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Changjun Zeng
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| |
Collapse
|