1
|
Yang Z, Wei Y, Fu Y, Wang X, Shen W, Shi A, Zhang H, Li H, Song X, Wang J, Jin M, Zheng H, Tao J, Wang Y. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe 2+ accumulation. Anim Reprod Sci 2024; 270:107605. [PMID: 39362062 DOI: 10.1016/j.anireprosci.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Bovine embryos by in vitro fertilization have become the primary source of commercial embryo transfers globally. However, the developmental capacity of in vitro maturation (IVM) oocytes is considerably lower than that of in vivo maturation (IVO) oocytes, owing to the production of reactive oxygen species (ROS) via mitochondrial metabolism, which was higher in IVM oocytes than in IVO oocytes. To avoid the negative effects of ROS on embryo quality, folic acid (FA) was supplemented directly into the IVM medium to antagonize ROS production, however, the mechanisms remain unknown. In the present study, five levels of FA (0, 25, 50, 100, and 200 µM) were supplemented into the bovine oocyte culture medium. The maturation, cleavage, and blastocyst formation rates increased by 8.95 %, 6.94 %, and 4.36 %, respectively, in the 50 µM group compared to the 0 µM group. Moreover, 7904 differential genes were identified between 0 µM and 50 µM groups by transcriptome sequencing, and they were mainly enriched in 8 pathways. The glutathione, ROS, and Fe2+ levels in oocytes were found to be associated with ferroptosis. Our results revealed that 50 µM FA promoted the IVM of bovine oocytes and affected the expression of genes involved in the ferroptosis pathway. The downregulation of TFR1 and STEAP3 led to a decrease in intracellular Fe2+ accumulation, and the upregulation of GCL increased oocyte GSH levels, thereby reducing the production of ROS in the ferroptosis pathway. Our study provides a new insight into the molecular mechanisms by which FA promotes bovine oocyte development in vitro.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaochang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yu Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wenjuan Shen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Han Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Heqiang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mengdong Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hao Zheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
3
|
Verruma CG, Santos RS, Marchesi JAP, Sales SLA, Vila RA, Rios ÁFL, Furtado CLM, Ramos ES. Dynamic methylation pattern of H19DMR and KvDMR1 in bovine oocytes and preimplantation embryos. J Assist Reprod Genet 2024; 41:333-345. [PMID: 38231285 PMCID: PMC10894807 DOI: 10.1007/s10815-023-03011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE This study aimed to evaluate the epigenetic reprogramming of ICR1 (KvDMR1) and ICR2 (H19DMR) and expression of genes controlled by them as well as those involved in methylation, demethylation, and pluripotency. METHODS We collected germinal vesicle (GV) and metaphase II (MII) oocytes, and preimplantation embryos at five stages [zygote, 4-8 cells, 8-16 cells, morula, and expanded blastocysts (ExB)]. DNA methylation was assessed by BiSeq, and the gene expression was evaluated using qPCR. RESULTS H19DMR showed an increased DNA methylation from GV to MII oocytes (68.04% and 98.05%, respectively), decreasing in zygotes (85.83%) until morula (61.65%), and ExB (63.63%). H19 and IGF2 showed increased expression in zygotes, which decreased in further stages. KvDMR1 was hypermethylated in both GV (71.82%) and MII (69.43%) and in zygotes (73.70%) up to morula (77.84%), with a loss of methylation at the ExB (36.64%). The zygote had higher expression of most genes, except for CDKN1C and PHLDA2, which were highly expressed in MII and GV oocytes, respectively. DNMTs showed increased expression in oocytes, followed by a reduction in the earliest stages of embryo development. TET1 was downregulated until 4-8-cell and upregulated in 8-16-cell embryos. TET2 and TET3 showed higher expression in oocytes, and a downregulation in MII oocytes and 4-8-cell embryo. CONCLUSION We highlighted the heterogeneity in the DNA methylation of H19DMR and KvDMR1 and a dynamic expression pattern of genes controlled by them. The expression of DNMTs and TETs genes was also dynamic owing to epigenetic reprogramming.
Collapse
Affiliation(s)
- Carolina G Verruma
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renan S Santos
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Jorge A P Marchesi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sarah L A Sales
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Reginaldo A Vila
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Álvaro F L Rios
- Biotechnology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Goitacazes Campus, Rio de Janeiro, Brazil
| | - Cristiana L M Furtado
- Experimental Biology Center, Graduate Program in Medical Sciences, University of Fortaleza - UNIFOR, Fortaleza, CE, 60811-905, Brazil
- Drug Research and Development Center (NPDM), Postgraduate Program in Translational Medicine, Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Ester S Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
4
|
Song B, Yu L, Liu X, Goswami N, Gong R, Ren Z. Exploring optimal folic acid supplementation levels for lactating-pregnant rabbit does with different litter size. J Anim Sci 2024; 102:skae340. [PMID: 39503276 PMCID: PMC11633453 DOI: 10.1093/jas/skae340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024] Open
Abstract
The lactation-pregnancy overlap in the industrialized 49-d breeding model increases nutritional demands for lactating-pregnant rabbit does. This study examined the effects of folic acid (FA) on the production performance and intestinal microflora of does with different litter sizes (LS, or number of kits). A total of 144 third-parity Hyplus does, aged 11 mo and weighing approximately 5.00 ± 0.07 kg, were divided into 4 treatment groups: control group (basal diet) and FA groups (basal diet + 15, 30, and 45 mg/kg FA). Does with LS of 5, 7, and 9 were selected after weaning. Our findings revealed that 1) Increased FA supplementation initially increased and then decreased the pre-lactation body weight of 21-d-old kits and prolactin (PRL) level of lactating does, while showing an inverse trend for estrogen (E) level of does. Increased LS significantly (P < 0.05) correlated with reduced milk yield of does. There was a significant (P < 0.05) interaction between FA and LS affecting PRL, E, growth hormone levels of does, and the pre-lactation body weight of 21-d-old kits; 2) Increased FA supplementation initially increased and then decreased the post-lactation body weight of 21-d-old and 35-d-old kits, elevated plasma FA (PFA) level of lactating-pregnant does, and significantly (P < 0.05) impacted the pregnancy rate of does. Increased LS was associated with reduced post-lactation body weight in 21-d-old and 35-d-old kits (P < 0.05). There was a significant (P < 0.05) interaction between FA and LS affecting plasma insulin-like growth factor-1 (IGF-1), homocysteine (HCY), PFA levels of does, the post-lactation body weight of 21-d-old kits, and weaning body weight of 35-d-old kits; and 3) FA supplementation promoted the growth of Ruminococcaceae and Rikenellaceae_RC9_gut_group in the feces of lactating-pregnant does, as well as the proliferation of Lachnospiraceae_NK4A136_group in the feces of pregnant does, suggesting enhanced anti-inflammatory properties and improved crude fiber breakdown. In summary, FA supplementation improved conception rates, regulated lactation-related hormone synthesis and secretion, increased body weight of 21-d-old kits, and enhanced intestinal anti-inflammatory functions.
Collapse
Affiliation(s)
- Bing Song
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lin Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Xiaoxiao Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Naqash Goswami
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Ruiguang Gong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
5
|
In vivo and in vitro matured bovine oocytes present a distinct pattern of single-cell gene expression. ZYGOTE 2023; 31:31-43. [PMID: 36263617 DOI: 10.1017/s0967199422000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oocyte gene expression is a well controlled event that promotes gamete competence to undergo maturation, fertilization, and to support early embryo development, directly affecting reproductive outcomes. Considering that in vivo controlled ovarian stimulation or in vitro maturation (IVM) for the acquisition of mature oocytes has distinct implications for gene expression, we sought to evaluate the effects of these procedures on the expression of competence-related genes in single-cell oocytes. Healthy Nelore cows of reproductive age were synchronized to harvest in vivo matured oocytes; ovaries from slaughtered animals were used to obtain cumulus-oocyte complexes that were in vitro matured. Single-cell gene expression was performed using TaqMan Low-Density Arrays and 42 genes were evaluated. In silico analysis of protein interactions and Gene Ontology (GO) analysis was performed. Reduced gene expression was observed for 24 targets in IVM oocytes when compared with those of in vivo matured oocytes (P < 0.05). Differences ranged from 1.5-fold to 4.8-fold higher in in vivo oocytes and the BMP15 (5.28), GDF9 (6.23), NOBOX (7.25), HSPA8 (7.85) and MSX1 (11.00) showed the greatest fold increases. The strongest score of functional interactions was observed between the CDC20 and CKS2, with the differentially expressed gene CDC20 being the main marker behind GO enrichment. IVM negatively affected the expression of important genes related to oocyte competency, and showed higher expression levels in in vivo matured oocytes. In vivo controlled ovarian stimulation may be a better strategy to achieve proper oocyte competence and increase the success of assisted reproductive technologies.
Collapse
|
6
|
Zhang L, Wu LM, Xu WH, Tian YQ, Liu XL, Xia CY, Zhang L, Li SS, Jin Z, Wu XL, Shu J. Status of maternal serum B vitamins and pregnancy outcomes: New insights from in vitro fertilization and embryo transfer (IVF-ET) treatment. Front Nutr 2022; 9:962212. [PMID: 36438768 PMCID: PMC9691978 DOI: 10.3389/fnut.2022.962212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
The influence of B vitamins on human fertility and infertility treatments remains elusive. Therefore, this study investigated the association of most B vitamins with IVF-ET outcomes. A total of 216 subjects aged <35 year in their first oocyte retrieval cycle were recruited. Blood samples from the participants were collected before the oocyte pick-up procedure, and serum levels of riboflavin, niacin, pantothenic acid, vitamin B6 (including PA and PLP), folate, and methylmalonic acid (MMA) were detected using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). Endpoints were classified into three groups according to tertiles (lower, middle, and upper) of each vitamin index, and the association of the serum vitamin status with intermediate and clinical outcomes was analyzed using a generalized estimating equation model. Higher riboflavin levels were associated with elevated probabilities of high-quality embryos, as well as clinical pregnancy after embryo transfer. A greater likelihood of transferable embryos was found in the middle tertile of serum folate. Similarly, a negative correlation of serum MMA, a marker of vitamin B12 deficiency, with high-quality embryos was identified. No significance was observed for other vitamins in terms of all endpoints. Therefore, sufficient levels of pre-conception riboflavin, folate, and vitamin B12 are recommended for successful infertility treatment and pregnancy planning; further evidence is needed to confirm our conclusion.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Li-mei Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei-hai Xu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu-qing Tian
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, China
| | - Xu-ling Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Chen-yun Xia
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Lin Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shi-shi Li
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang-li Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiang-li Wu
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Jing Shu
| |
Collapse
|
7
|
Saini S, Sharma V, Ansari S, Kumar A, Thakur A, Malik H, Kumar S, Malakar D. Folate supplementation during oocyte maturation positively impacts the folate-methionine metabolism in pre-implantation embryos. Theriogenology 2022; 182:63-70. [DOI: 10.1016/j.theriogenology.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 01/30/2023]
|