1
|
Medved S, Salinas J, Kojis D, Weinstein G, Vasan RS, Beiser A, Seshadri S. The association between levels of brain-derived neurotrophic factor and comorbid depression in patients with cardiovascular disease: The Framingham Heart Study. Psychiatry Clin Neurosci 2024; 78:438-445. [PMID: 38842141 PMCID: PMC11410362 DOI: 10.1111/pcn.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 06/07/2024]
Abstract
AIM The current study aims to investigate the association of serum brain-derived neurotrophic factor (BDNF) levels with symptoms of depression in adults with and without prevalent cardiovascular disease (CVD), an often burdensome comorbidity. METHODS This cross-sectional study included participants from FHS (Framingham Heart Study) who had available serum BDNF levels. Depressive symptoms were assessed using the Center for Epidemiological Studies-Depression Scale (CES-D) with a score ≥16 indicating mild to moderate and ≥21 severe depression. Participants taking antidepressant medications were excluded from the study. RESULTS Altogether 3716 FHS participants were included in the final analysis (mean age, 64.3 ± 11.5 years; 55% women). After adjusting for potential confounders, greater BDNF levels were associated with reduced severe depression risk (odds ratio [OR], 0.78 [95% CI, 0.64-0.96]; P = 0.016). Among participants with CVD, greater BDNF levels were related to lower risk of depressive symptoms (CES-D ≥ 16 OR, 0.63 [95% CI, 0.45-0.89], P = 0.008; CES-D ≥ 21 OR, 0.49 [95% CI, 0.31-0.76], P = 0.002). The inverse relationship between BDNF and depressive symptom risk was present in women with CVD (CES-D ≥ 16 OR, 0.63 [95% CI, 0.40-0.99], P = 0.047; CES-D ≥ 21 OR, 0.38 [95% CI, 0.21-0.70], P = 0.002) but not in men. CONCLUSION Lower serum BDNF levels are associated with a higher risk of depressive symptoms in CVD, particularly among women. These findings implicate BDNF in the complex biological mechanisms that underlie prior associations observed between CVD and depression. To reduce the burden of depression in the large proportion of midlife and older adults with CVD, a better understanding of how BDNF may modify these pathways is merited.
Collapse
Affiliation(s)
- Sara Medved
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Joel Salinas
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Kojis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | | | - Ramachandran S. Vasan
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sudha Seshadri
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, Texas, USA
| |
Collapse
|
2
|
Malewska-Kasprzak M, Skibińska M, Dmitrzak-Węglarz M. Alterations in Neurotrophins in Alcohol-Addicted Patients during Alcohol Withdrawal. Brain Sci 2024; 14:583. [PMID: 38928583 PMCID: PMC11202159 DOI: 10.3390/brainsci14060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is related to mental and somatic disorders that result in alcohol withdrawal syndrome (AWS), with 30% of AWS cases leading to life-threatening delirium tremens (DTs). Currently, studies do not support using any one biomarker in DTs. Neurotrophins affect neuromodulation, playing a role in the pathogenesis of AUD, AWS, and DTs. METHODS This review aims to summarize experimental and clinical data related to neurotrophins and S100B in neuroplasticity, as well as neurodegeneration in the context of AUD, AWS, and DTs. This work used publications that were selected based on the protocol consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. RESULTS The BDNF level could be a good candidate biomarker for relapse susceptibility, as it is significantly reduced during consumption and gradually increases during abstinence. GDNF influences AUD through its integral role in the function of dopaminergic neurons and ablates the return to alcohol-drinking behavior. NGF protects neurons from ethanol-induced cytotoxic damage and affects recovery from cognitive deficits after brain damage. The NT-3 level is decreased after alcohol exposure and is involved in compensatory mechanisms for cognitive decline in AUD. NT-4 affects oxidative stress, which is associated with chronic alcohol consumption. S100B is used as a biomarker of brain damage, with elevated levels in serum in AUD, and can protect 5-HT neurons from the damage caused by alcohol. CONCLUSIONS BDNF, GDNF, NT-3, NT-4, NGF, and S100B may be valuable markers for withdrawal syndrome. In particular, the most relevant is their association with the development of delirium complications. However, there are few data concerning some neurotrophins in AWS and DTs, suggesting the need for further research.
Collapse
Affiliation(s)
| | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Monika Dmitrzak-Węglarz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| |
Collapse
|
3
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
4
|
Romero-Herrera I, Nogales F, Diaz-Castro J, Moreno-Fernandez J, Gallego-Lopez MDC, Ochoa JJ, Carreras O, Ojeda ML. Binge drinking leads to an oxidative and metabolic imbalance in skeletal muscle during adolescence in rats: endocrine repercussion. J Physiol Biochem 2023; 79:799-810. [PMID: 37676577 PMCID: PMC10635949 DOI: 10.1007/s13105-023-00983-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant model of alcohol consumption, mainly used by adolescents. It has recently been related to the hepatic IR-process. Skeletal muscle is known to be involved in insulin action and modulation through myokine secretion. However, there is no information on muscle metabolism and myokine secretion after BD exposure in adolescents. Two experimental groups of adolescent rats have been used: control and BD-exposed one. Oxidative balance, energy status and lipid, and protein metabolism have been analyzed in muscle, together with myokine serum levels (IL-6, myostatin, LIF, IL-5, fractalkine, FGF21, irisin, BDNF, FSTL1, apelin, FABP3, osteocrin, osteonectin (SPARC), and oncostatin). In muscle, BD affects the antioxidant enzyme balance leading to lipid and protein oxidation. Besides, it also increases the activation of AMPK and thus contributes to decrease SREBP1 and pmTOR and to increase FOXO3a expressions, promoting lipid and protein degradation. These alterations deeply affect the myokine secretion pattern. This is the first study to examine a general myokine response after exposure to BD. BD not only caused a detrimental imbalance in myokines related to muscle turnover, decreased those contributing to increase IR-process, decreased FST-1 and apelin and their cardioprotective function but also reduced the neuroprotective BDNF. Consequently, BD leads to an important metabolic and energetic disequilibrium in skeletal muscle, which contributes to exacerbate a general IR-process.
Collapse
Affiliation(s)
- Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain.
| | - Javier Diaz-Castro
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Jorge Moreno-Fernandez
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | | | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| |
Collapse
|
5
|
Shafiee A, Jafarabady K, Rafiei MA, Beiky M, Seighali N, Golpayegani G, Jalali M, Soltani Abhari F, Arabzadeh Bahri R, Safari O, Bakhtiyari M, Alirezaei A. Effect of alcohol on Brain-Derived Neurotrophic Factor (BDNF) blood levels: a systematic review and meta-analysis. Sci Rep 2023; 13:17554. [PMID: 37845289 PMCID: PMC10579393 DOI: 10.1038/s41598-023-44798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a vital protein involved in neuronal development, survival, and plasticity. Alcohol consumption has been implicated in various neurocognitive deficits and neurodegenerative disorders. However, the impact of alcohol on BDNF blood levels remains unclear. This systematic review and meta-analysis aimed to investigate the effect of alcohol consumption on BDNF blood levels. A comprehensive search of electronic databases was conducted to identify relevant studies. Eligible studies were selected based on predefined inclusion criteria. Data extraction was performed, and methodological quality was assessed using appropriate tools. A meta-analysis was conducted to estimate the overall effect size of alcohol consumption on BDNF levels. A total of 25 studies met the inclusion criteria and were included in the final analysis. Alcohol use and BDNF blood levels were significantly correlated, according to the meta-analysis (p = 0.008). Overall, it was discovered that drinking alcohol significantly decreased BDNF levels (SMD: - 0.39; 95% CI: - 0.68 to - 0.10; I2: 93%). There was a non-significant trend suggesting that alcohol withdrawal might increase BDNF levels, with an SMD of 0.26 (95% CI: - 0.09 to 0.62; I2: 86%; p = 0.14). Subgroup analysis based on the source of BDNF demonstrated significant differences between the subgroups (p = 0.0008). No significant publication bias was observed. This study showed that alcohol consumption is associated with a significant decrease in BDNF blood levels. The findings suggest a negative impact of alcohol on BDNF levels regardless of alcohol dosage. Further studies are needed to strengthen the evidence and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Psychiatry and Mental Health, Alborz University of Medical Sciences, Karaj, Iran.
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Ali Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Beiky
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Golshid Golpayegani
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrsa Jalali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Faeze Soltani Abhari
- Department of Psychiatry and Mental Health, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Omid Safari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Community Medicine and Epidemiology, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhesam Alirezaei
- Department of Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Dias da Silva D, Silva JP, Carmo H, Carvalho F. Neurotoxicity of psychoactive substances: A mechanistic overview. CURRENT OPINION IN TOXICOLOGY 2021; 28:76-83. [DOI: 10.1016/j.cotox.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|