1
|
Brandt AE, Rø TB, Finnanger TG, Hypher RE, Lien E, Lund B, Catroppa C, Andersson S, Risnes K, Stubberud J. Intelligence and executive function are associated with age at insult, time post-insult, and disability following chronic pediatric acquired brain injury. Front Neurol 2024; 14:1192623. [PMID: 38249741 PMCID: PMC10796693 DOI: 10.3389/fneur.2023.1192623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pediatric acquired brain injury (pABI) profoundly affects cognitive functions, encompassing IQ and executive functions (EFs). Particularly, young age at insult may lead to persistent and debilitating deficits, affecting daily-life functioning negatively. This study delves into the intricate interplay of age at insult, time post-insult, and their associations with IQ and EFs during chronic (>1 year) pABI. Additionally, we investigate cognitive performance across different levels of global function, recognizing the multifaceted nature of developmental factors influencing outcomes. Methods Drawing upon insult data and baseline information analyzing secondary outcomes from a multicenter RCT, including comprehensive medical and neuropsychological assessments of participants aged 10 to 17 years with pABI and parent-reported executive dysfunctions. The study examined associations between age at insult (early, EI; ≤7y vs. late, LI; > 7y) and time post-insult with IQ and EFs (updating, shifting, inhibition, and executive attention). Additionally, utilizing the Pediatric Glasgow Outcome Scale-Extended, we explored cognitive performance across levels of global functioning. Results Seventy-six participants, median 8 years at insult and 5 years post-insult, predominantly exhibiting moderate disability (n = 38), were included. Notably, participants with LI demonstrated superior IQ, executive attention, and shifting compared to EI, [adjusted mean differences with 95% Confidence Intervals (CIs); 7.9 (1.4, 14.4), 2.48 (0.71, 4.24) and 1.73 (0.03, 3.43), respectively]. Conversely, extended post-insult duration was associated with diminished performances, evident in mean differences with 95% CIs for IQ, updating, shifting, and executive attention compared to 1-2 years post-insult [-11.1 (-20.4, -1.7), -8.4 (-16.7, -0.1), -2.6 (-4.4, -0.7), -2.9 (-4.5, -1.2), -3.8 (-6.4, -1.3), -2.6 (-5.0, -0.3), and -3.2 (-5.7, -0.8)]. Global function exhibited a robust relationship with IQ and EFs. Conclusion Early insults and prolonged post-insult durations impose lasting tribulations in chronic pABI. While confirmation through larger studies is needed, these findings carry clinical implications, underscoring the importance of vigilance regarding early insults. Moreover, they dispel the notion that children fully recover from pABI; instead, they advocate equitable rehabilitation offerings for pABI, tailored to address cognitive functions, recognizing their pivotal role in achieving independence and participation in society. Incorporating disability screening in long-term follow-up assessments may prove beneficial.
Collapse
Affiliation(s)
- Anne Elisabeth Brandt
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein B. Rø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torun G. Finnanger
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ruth E. Hypher
- Department of Clinical Neurosciences for Children, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Lien
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bendik Lund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cathy Catroppa
- Brain and Mind, Clinical Sciences, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Psychology, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | | | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Stubberud
- Department of Clinical Neurosciences for Children, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Research, Lovisenberg Diaconal Hospital, Oslo, Norway
| |
Collapse
|
2
|
Grosse L, Meuche AC, Parzefall B, Börner C, Schnabel JF, Späh MA, Klug P, Sollmann N, Klich L, Hösl M, Heinen F, Berweck S, Schröder SA, Bonfert MV. Functional Repetitive Neuromuscular Magnetic Stimulation (frNMS) Targeting the Tibialis Anterior Muscle in Children with Upper Motor Neuron Syndrome: A Feasibility Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1584. [PMID: 37892247 PMCID: PMC10605892 DOI: 10.3390/children10101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023]
Abstract
Non-invasive neurostimulation as an adjunctive intervention to task-specific motor training is an approach to foster motor performance in patients affected by upper motor neuron syndrome (UMNS). Here, we present first-line data of repetitive neuromuscular magnetic stimulation (rNMS) in combination with personalized task-specific physical exercises targeting the tibialis anterior muscle to improve ankle dorsiflexion (functional rNMS (frNMS)). The main objective of this pilot study was to assess the feasibility in terms of adherence to frNMS, safety and practicability of frNMS, and satisfaction with frNMS. First, during 10 training sessions, only physical exercises were performed (study period (SP) A). After a 1 week break, frNMS was delivered during 10 sessions (SPC). Twelve children affected by UMNS (mean age 8.9 ± 1.6 years) adhered to 93% (SPA) and 94% (SPC) of the sessions, and omittance was not related to the intervention itself in any case. frNMS was safe (no AEs reported in 88% of sessions, no AE-related discontinuation). The practicability of and satisfaction with frNMS were high. Patient/caregiver-reported outcomes revealed meaningful benefits on the individual level. The strength of the ankle dorsiflexors (MRC score) clinically meaningfully increased in four participants as spasticity of ankle plantar flexors (Tardieu scores) decreased in four participants after SPC. frNMS was experienced as a feasible intervention for children affected by UMNS. Together with the beneficial effects achieved on the individual level in some participants, this first study supports further real-world, large-scale, sham-controlled investigations to investigate the specific effects and distinct mechanisms of action of frNMS.
Collapse
Affiliation(s)
- Leonie Grosse
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Anne C. Meuche
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Barbara Parzefall
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Corinna Börner
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Julian F. Schnabel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Malina A. Späh
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Pia Klug
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Luisa Klich
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Matthias Hösl
- Gait and Motion Analysis Laboratory, Schoen Clinic Vogtareuth, Krankenhausstr. 20, 83569 Vogtareuth, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Steffen Berweck
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Sebastian A. Schröder
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Michaela V. Bonfert
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
3
|
Hayes L, Shaw S, Pearce MS, Forsyth RJ. Requirements for and current provision of rehabilitation services for children after severe acquired brain injury in the UK: a population-based study. Arch Dis Child 2017; 102:813-820. [PMID: 28416561 DOI: 10.1136/archdischild-2016-312166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Survival with brain injury is an outcome of severe illness that may be becoming more common. Provision for children in this situation has received little attention. We sought to estimate rates of severe paediatric acquired brain injury (ABI) requiring rehabilitation and to describe current provision of services for these children in the UK. METHODS This study conducted an analysis of Hospital Episode Statistics data between April 2003 and March 2012, supplemented by a UK provider survey completed in 2015. A probable severe ABI requiring rehabilitation (PSABIR) event was inferred from the co-occurrence of a medical condition likely to cause ABI (such as meningitis) and a prolonged inpatient stay (>=28 days). RESULTS During the period studied, 4508 children aged 1-18 years in England had PSABIRs. Trauma was the most common cause (30%) followed by brain tumours (19%) and anoxia (18.3%). An excess in older males was attributable to trauma. We estimate the incidence of PSABIR to be at least 2.93 (95%CI 2.62 to 3.26) per 100 000 young people (1-18 years) pa. The provider survey confirmed marked geographic variability in the organisation of services in the UK. CONCLUSIONS There are at least 350 PSABIR events in children in the UK annually, a health problem of similar magnitude to that of cerebral palsy. Service provision for this population varies widely around the UK, in contrast with the nationally coordinated approach to paediatric intensive care and major trauma provision.
Collapse
Affiliation(s)
- Louise Hayes
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Shaw
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Mark S Pearce
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Rob J Forsyth
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Hayward R, Britto J, Dunaway D, Jeelani O. Connecting raised intracranial pressure and cognitive delay in craniosynostosis: many assumptions, little evidence. J Neurosurg Pediatr 2016; 18:242-50. [PMID: 27176895 DOI: 10.3171/2015.6.peds15144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jonathan Britto
- Craniofacial Surgery, Great Ormond Street for Children NHS Trust, London, United Kingdom
| | - David Dunaway
- Craniofacial Surgery, Great Ormond Street for Children NHS Trust, London, United Kingdom
| | | |
Collapse
|
5
|
Turkstra LS, Politis AM, Forsyth R. Cognitive-communication disorders in children with traumatic brain injury. Dev Med Child Neurol 2015; 57:217-22. [PMID: 25283953 DOI: 10.1111/dmcn.12600] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2014] [Indexed: 11/28/2022]
Abstract
Children with moderate to severe traumatic brain injury (TBI) are at risk of developing cognitive-communication disorders that have devastating effects on their school life, family life, and social life. These problems can be difficult for families to describe and may be overlooked by community-based providers who are unfamiliar with TBI sequelae. To support the identification and management of cognitive-communication disorders, we review the common signs and symptoms of these disorders in children with TBI and discuss principles of assessment and intervention.
Collapse
Affiliation(s)
- Lyn S Turkstra
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
6
|
Kelly G, Mobbs S, Pritkin JN, Mayston M, Mather M, Rosenbaum P, Henderson R, Forsyth R. Gross Motor Function Measure-66 trajectories in children recovering after severe acquired brain injury. Dev Med Child Neurol 2015; 57:241-7. [PMID: 25264904 DOI: 10.1111/dmcn.12592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 01/28/2023]
Abstract
AIM To explore the appropriateness of using the interval-scale version of the Gross Motor Function Measure (GMFM-66) in paediatric acquired brain injury (ABI), and to characterize GMFM-66 recovery trajectories and factors that affect them. METHOD An observational study of gross motor recovery trajectories during rehabilitation at a single specialist paediatric in-patient rehabilitation centre using repeated GMFM-66 observations. The cohort comprised children rehabilitating after severe ABI of various causes. RESULTS A total of 287 GMFM observations were made on 74 children (45 males, 29 females; age-at-injury range 0.3-17.3y, median age 11.3y, interquartile range 6.6-15.0y). Differences in item-difficulty estimates between this sample and the cerebral palsy population in which the GMFM-66 was initially developed are not detectable at this sample size. Changes in GMFM over time show lag-exponential forms. Children sustaining hypoxic-ischaemic injuries made the slowest and least complete recoveries. Older children made faster gross motor recoveries after controlling for aetiology. The time at which gross motor ability began to rise coincided approximately with admission to the rehabilitation facility. INTERPRETATION Aetiology is strongly associated with gross motor recovery after ABI. Younger age at injury was associated with slower recovery. Comparable item-difficulty scores in this sample and in the cerebral palsy population suggest comparable sequences of gross motor ability reacquisition.
Collapse
Affiliation(s)
- Gemma Kelly
- Harrison Research Centre, The Children's Trust, Tadworth, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Rob Forsyth
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| |
Collapse
|
8
|
Casadio M, Tamagnone I, Summa S, Sanguineti V. Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level. Front Comput Neurosci 2013; 7:97. [PMID: 23986688 PMCID: PMC3749429 DOI: 10.3389/fncom.2013.00097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
Computational models of neuromotor recovery after a stroke might help to unveil the underlying physiological mechanisms and might suggest how to make recovery faster and more effective. At least in principle, these models could serve: (i) To provide testable hypotheses on the nature of recovery; (ii) To predict the recovery of individual patients; (iii) To design patient-specific “optimal” therapy, by setting the treatment variables for maximizing the amount of recovery or for achieving a better generalization of the learned abilities across different tasks. Here we review the state of the art of computational models for neuromotor recovery through exercise, and their implications for treatment. We show that to properly account for the computational mechanisms of neuromotor recovery, multiple levels of description need to be taken into account. The review specifically covers models of recovery at central, functional and muscle synergy level.
Collapse
Affiliation(s)
- Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, Neuroengineering and Neurorobotics Lab (NeuroLAB), University of Genoa Genoa, Italy
| | | | | | | |
Collapse
|
9
|
Kuni BJ, Banwell BL, Till C. Cognitive and Behavioral Outcomes in Individuals With a History of Acute Disseminated Encephalomyelitis (ADEM). Dev Neuropsychol 2012; 37:682-96. [DOI: 10.1080/87565641.2012.690799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Irimia A, Wang B, Aylward SR, Prastawa MW, Pace DF, Gerig G, Hovda DA, Kikinis R, Vespa PM, Van Horn JD. Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction. NEUROIMAGE-CLINICAL 2012; 1:1-17. [PMID: 24179732 PMCID: PMC3757727 DOI: 10.1016/j.nicl.2012.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/01/2022]
Abstract
Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome.
Collapse
Key Words
- 3D, three-dimensional
- AAL, Automatic Anatomical Labeling
- ADC, apparent diffusion coefficient
- ANTS, Advanced Normalization ToolS
- BOLD, blood oxygen level dependent
- CC, corpus callosum
- CT, computed tomography
- DAI, diffuse axonal injury
- DSI, diffusion spectrum imaging
- DTI, diffusion tensor imaging
- DWI, diffusion weighted imaging
- Diffusion tensor
- FA, fractional anisotropy
- FLAIR, Fluid Attenuated Inversion Recovery
- FSE, Functional Status Examination
- GCS, Glasgow Coma Score
- GM, gray matter
- GOS, Glasgow Outcome Score
- GRE, Gradient Recalled Echo
- HARDI, high-angular-resolution diffusion imaging
- IBA, Individual Brain Atlas
- LDA, linear discriminant analysis
- MRI, magnetic resonance imaging
- MRI/fMRI
- NINDS, National Institute of Neurological Disorders and Stroke
- Neuroimaging
- Outcome measures
- PCA, principal component analysis
- PROMO, PROspective MOtion Correction
- SPM, Statistical Parametric Mapping
- SWI, Susceptibility Weighted Imaging
- TBI, traumatic brain injury
- TBSS, tract-based spatial statistics
- Trauma
- WM, white matter
- fMRI, functional magnetic resonance imaging
Collapse
Affiliation(s)
- Andrei Irimia
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Deary IJ. Looking for 'system integrity' in cognitive epidemiology. Gerontology 2012; 58:545-53. [PMID: 22907506 DOI: 10.1159/000341157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/20/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the last decade, an increasing body of empirical evidence has gathered to establish an association between higher cognitive ability in youth and later mortality, less morbidity and better health. This field of research is known as cognitive epidemiology. The causes of these associations are not understood. OBJECTIVE Among the possible explanations for the associations is the suggestion that they might, in part, be accounted for by general bodily 'system integrity'. That is, scoring well on cognitive ability tests might be an indicator of a more general tendency for complex systems in the body to be efficient. The construct of system integrity is critically assessed. METHOD This viewpoint provides a critical presentation and an empirical and theoretical evaluation of the construct of system integrity as it is used in cognitive epidemiology. RESULTS A precedent of the system integrity suggestion is discovered. The empirical tests of the system integrity idea to date are critically evaluated. Other possible routes to testing system integrity are suggested. There is a critical re-evaluation of the idea and other, related concepts. CONCLUSION The construct of system integrity is distinct from related constructs. It is still underdeveloped theoretically, and undertested empirically within cognitive epidemiology.
Collapse
Affiliation(s)
- Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Affiliation(s)
- Rob Forsyth
- Institute of Neuroscience, Newcastle University and Great North Children's Hospital, Newcastle-upon-Tyne, UK.
| | | |
Collapse
|
13
|
Kaiser M, Varier S. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. NETWORK (BRISTOL, ENGLAND) 2011; 22:143-147. [PMID: 22149674 DOI: 10.3109/0954898x.2011.638968] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neural networks show a progressive increase in complexity during the time course of evolution. From diffuse nerve nets in Cnidaria to modular, hierarchical systems in macaque and humans, there is a gradual shift from simple processes involving a limited amount of tasks and modalities to complex functional and behavioral processing integrating different kinds of information from highly specialized tissue. However, studies in a range of species suggest that fundamental similarities, in spatial and topological features as well as in developmental mechanisms for network formation, are retained across evolution. 'Small-world' topology and highly connected regions (hubs) are prevalent across the evolutionary scale, ensuring efficient processing and resilience to internal (e.g. lesions) and external (e.g. environment) changes. Furthermore, in most species, even the establishment of hubs, long-range connections linking distant components, and a modular organization, relies on similar mechanisms. In conclusion, evolutionary divergence leads to greater complexity while following essential developmental constraints.
Collapse
Affiliation(s)
- Marcus Kaiser
- School of Computing Science, Newcastle University, Newcastle upon Tyne,UK.
| | | |
Collapse
|