1
|
Overman MJ, Binns E, Milosevich ET, Demeyere N. Recovery of Visuospatial Neglect With Standard Treatment: A Systematic Review and Meta-Analysis. Stroke 2024; 55:2325-2339. [PMID: 39016005 PMCID: PMC11346719 DOI: 10.1161/strokeaha.124.046760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Visuospatial neglect is a common consequence of stroke and is characterized by impaired attention to contralesional space. Currently, the extent and time course of recovery from neglect are not clearly established. This systematic review and meta-analysis aimed to determine the recovery trajectory of poststroke neglect with standard treatment. METHODS PsycInfo, Embase, and MEDLINE were searched for articles reporting recovery rates of neglect after stroke. Time since stroke was categorized into early (0-3 months), mid (3-6 months), and late (>6 months) recovery phases. Random-effects models for pooled prevalence were generated for each phase, and potential sources of heterogeneity were explored with metaregressions. Methodological quality of each study was assessed using the Joanna Briggs Institute checklist, with low-quality studies excluded in sensitivity analyses. RESULTS The search captured 4130 articles including duplicates, and 111 full-text reviews were undertaken. A total of 27 studies reporting data from 839 stroke survivors with neglect were included for review. Meta-analyses indicated a recovery rate of 42% in the early phase, which increased to 53% in the mid-recovery phase. Additional recovery in the late phase was minimal, with an estimated 56% recovery rate. Heterogeneity of studies was high (I2>75%) in all 3 phases of recovery. Estimates were robust to sensitivity analyses. Metaregressions showed significantly greater recovery in studies that included patients with left-hemisphere lesions (β=0.275, P<0.05, I2=84%). CONCLUSIONS Most recovery from neglect occurs in the first 3 months, although additional gains can be expected up to 6 months poststroke. While a large proportion of patients recover from neglect, over 40% show persistent symptoms. Further research is needed on effective rehabilitation interventions, particularly focusing on patients most at risk of chronic visuospatial neglect. REGISTRATION URL: https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42023388763.
Collapse
Affiliation(s)
- Margot Juliëtte Overman
- Department of Experimental Psychology (M.J.O., E.B., E.T.M.), University of Oxford, United Kingdom
| | - Elena Binns
- Department of Experimental Psychology (M.J.O., E.B., E.T.M.), University of Oxford, United Kingdom
| | - Elise T. Milosevich
- Department of Experimental Psychology (M.J.O., E.B., E.T.M.), University of Oxford, United Kingdom
| | - Nele Demeyere
- Nuffield Department of Clinical Neurosciences (N.D.), University of Oxford, United Kingdom
| |
Collapse
|
2
|
Olgiati E, Violante IR, Xu S, Sinclair TG, Li LM, Crow JN, Kapsetaki ME, Calvo R, Li K, Nayar M, Grossman N, Patel MC, Wise RJS, Malhotra PA. Targeted non-invasive brain stimulation boosts attention and modulates contralesional brain networks following right hemisphere stroke. Neuroimage Clin 2024; 42:103599. [PMID: 38608376 PMCID: PMC11019269 DOI: 10.1016/j.nicl.2024.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Right hemisphere stroke patients frequently present with a combination of lateralised and non-lateralised attentional deficits characteristic of the neglect syndrome. Attentional deficits are associated with poor functional outcome and are challenging to treat, with non-lateralised deficits often persisting into the chronic stage and representing a common complaint among patients and families. In this study, we investigated the effects of non-invasive brain stimulation on non-lateralised attentional deficits in right-hemispheric stroke. In a randomised double-blind sham-controlled crossover study, twenty-two patients received real and sham transcranial Direct Current Stimulation (tDCS) whilst performing a non-lateralised attentional task. A high definition tDCS montage guided by stimulation modelling was employed to maximise current delivery over the right dorsolateral prefrontal cortex, a key node in the vigilance network. In a parallel study, we examined brain network response to this tDCS montage by carrying out concurrent fMRI during stimulation in healthy participants and patients. At the group level, stimulation improved target detection in patients, reducing overall error rate when compared with sham stimulation. TDCS boosted performance throughout the duration of the task, with its effects briefly outlasting stimulation cessation. Exploratory lesion analysis indicated that response to stimulation was related to lesion location rather than volume. In particular, reduced stimulation response was associated with damage to the thalamus and postcentral gyrus. Concurrent stimulation-fMRI revealed that tDCS did not affect local connectivity but influenced functional connectivity within large-scale networks in the contralesional hemisphere. This combined behavioural and functional imaging approach shows that brain stimulation targeted to surviving tissue in the ipsilesional hemisphere improves non-lateralised attentional deficits following stroke. This effect may be exerted via contralesional network effects.
Collapse
Affiliation(s)
- Elena Olgiati
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK.
| | - Ines R Violante
- Imperial College London, Department of Brain Sciences, UK; University of Surrey, Department of Psychology, UK
| | - Shuler Xu
- Imperial College London, Department of Brain Sciences, UK; University College London, UK
| | | | - Lucia M Li
- Imperial College London, Department of Brain Sciences, UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Jennifer N Crow
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK
| | | | - Roberta Calvo
- UTHealth, Department of Neurobiology and Anatomy, McGovern Medical School, Houston, US
| | - Korina Li
- Imperial College London, Department of Brain Sciences, UK; University College London, UK
| | | | - Nir Grossman
- Imperial College London, Department of Brain Sciences, UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Maneesh C Patel
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK
| | - Richard J S Wise
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK
| | - Paresh A Malhotra
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| |
Collapse
|
3
|
Uimonen J, Villarreal S, Laari S, Arola A, Ijäs P, Salmi J, Hietanen M. Virtual reality tasks with eye tracking for mild spatial neglect assessment: a pilot study with acute stroke patients. Front Psychol 2024; 15:1319944. [PMID: 38348259 PMCID: PMC10860750 DOI: 10.3389/fpsyg.2024.1319944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Objective Increasing evidence shows that traditional neuropsychological tests are insensitive for detecting mild unilateral spatial neglect (USN), lack ecological validity, and are unable to clarify USN in all different spatial domains. Here we present a new, fully immersive virtual reality (VR) task battery with integrated eye tracking for mild visual USN and extinction assessment in the acute state of stroke to overthrow these limitations. Methods We included 11 right-sided stroke patients and 10 healthy controls aged 18-75 years. Three VR tasks named the Extinction, the Storage and the Shoot the target tasks were developed to assess USN. Furthermore, neuropsychological assessment examining various parts of cognitive functioning was conducted to measure general abilities. We compared VR and neuropsychological task performance in stroke patients - those with (USN+, n = 5) and without USN (USN-, n = 6) - to healthy controls (n = 10) and tentatively reported the usability of VR system in the acute state of stroke. Results Patients had mostly mild neurological and USN symptoms. Nonetheless, we found several differences between the USN+ and healthy control groups in VR task performance. Compared to controls, USN+ patients showed visual extinction and asymmetry in gaze behavior and detection times in distinct spatial locations. Extinction was most evident in the extrapersonal space and delayed detection times on the extreme left and on the left upper parts. Also, USN+ patients needed more time to complete TMT A compared with USN- patients and TMT B compared with controls. VR system usability and acceptance were rated high; no relevant adverse effects occurred. Conclusion New VR technology with eye tracking enables ecologically valid and objective assessment methods with various exact measures for mild USN and thus could potentially improve future clinical assessments.
Collapse
Affiliation(s)
- Jenni Uimonen
- Department of Neuropsychology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sanna Villarreal
- Department of Neuropsychology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Siiri Laari
- Department of Neuropsychology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Arola
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petra Ijäs
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Salmi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Marja Hietanen
- Department of Neuropsychology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Olgiati E, Malhotra PA. Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychol Rehabil 2022; 32:732-763. [PMID: 32892712 DOI: 10.1080/09602011.2020.1805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neglect is a disabling neuropsychological syndrome that is frequently observed following right-hemispheric stroke. Affected individuals often present with multiple attentional deficits, ranging from reduced orienting towards contralesional space to a generalized impairment in maintaining attention over time. Although a degree of spontaneous recovery occurs in most patients, in some individuals this condition can be treatment-resistant with prominent ongoing non-spatial deficits. Further, there is a large inter-individual variability in response to different therapeutic approaches. Given its potential to alter neuronal excitability and affect neuroplasticity, non-invasive brain stimulation is a promising tool that could potentially be utilized to facilitate recovery. However, there are many outstanding questions regarding its implementation in this heterogeneous patient group. Here we provide a critical overview of the available evidence on the use of non-invasive electrical brain stimulation, focussing on transcranial direct current stimulation (tDCS), to improve neglect and associated attentional deficits after right-hemispheric stroke. At present, there is insufficient robust evidence supporting the clinical use of tDCS to alleviate symptoms of neglect. Future research would benefit from careful study design, enhanced precision of electrical montages, multi-modal approaches exploring predictors of response, tailored dose-control applications and increased efforts to evaluate standalone tDCS versus its incorporation into combination therapy.
Collapse
Affiliation(s)
- Elena Olgiati
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, London, UK
| |
Collapse
|
5
|
Villarreal S, Linnavuo M, Sepponen R, Vuori O, Bonato M, Jokinen H, Hietanen M. Computer-Based Assessment: Dual-Task Outperforms Large-Screen Cancellation Task in Detecting Contralesional Omissions. Front Psychol 2022; 12:790438. [PMID: 35069375 PMCID: PMC8777372 DOI: 10.3389/fpsyg.2021.790438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: Traditionally, asymmetric spatial processing (i.e., hemispatial neglect) has been assessed with paper-and-pencil tasks, but growing evidence indicates that computer-based methods are a more sensitive assessment modality. It is not known, however, whether simply converting well-established paper-and-pencil methods into a digital format is the best option. The aim of the present study was to compare sensitivity in detecting contralesional omissions of two different computer-based methods: a "digitally converted" cancellation task was compared with a computer-based Visual and Auditory dual-tasking approach, which has already proved to be very sensitive. Methods: Participants included 40 patients with chronic unilateral stroke in either the right hemisphere (RH patients, N = 20) or the left hemisphere (LH patients, N = 20) and 20 age-matched healthy controls. The cancellation task was implemented on a very large format (173 cm × 277 cm) or in a smaller (A4) paper-and-pencil version. The computer-based dual-tasks were implemented on a 15'' monitor and required the detection of unilateral and bilateral briefly presented lateralized targets. Results: Neither version of the cancellation task was able to show spatial bias in RH patients. In contrast, in the Visual dual-task RH patients missed significantly more left-sided targets than controls in both unilateral and bilateral trials. They also missed significantly more left-sided than right-sided targets only in the bilateral trials of the Auditory dual-task. Conclusion: The dual-task setting outperforms the cancellation task approach even when the latter is implemented on a (large) screen. Attentionally demanding methods are useful for revealing mild forms of contralesional visuospatial deficits.
Collapse
Affiliation(s)
- Sanna Villarreal
- Division of Neuropsychology, HUH Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Linnavuo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Raimo Sepponen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Outi Vuori
- Division of Neuropsychology, HUH Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mario Bonato
- Department of General Psychology, University of Padova, Padua, Italy
| | - Hanna Jokinen
- Division of Neuropsychology, HUH Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marja Hietanen
- Division of Neuropsychology, HUH Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Unilateral Stroke: Computer-based Assessment Uncovers Non-Lateralized and Contralesional Visuoattentive Deficits. J Int Neuropsychol Soc 2021; 27:959-969. [PMID: 33551012 DOI: 10.1017/s1355617720001393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Patients with unilateral stroke commonly show hemispatial neglect or milder contralesional visuoattentive deficits, but spatially non-lateralized visuoattentive deficits have also been reported. The aim of the present study was to compare spatially lateralized (i.e., contralesional) and non-lateralized (i.e., general) visuoattentive deficits in left and right hemisphere stroke patients. METHOD Participants included 40 patients with chronic unilateral stroke in either the left hemisphere (LH group, n = 20) or the right hemisphere (RH group, n = 20) and 20 healthy controls. To assess the contralesional deficits, we used a traditional paper-and-pencil cancellation task (the Bells Test) and a Lateralized Targets Computer Task. To assess the non-lateralized deficits, we developed a novel large-screen (173 × 277 cm) computer method, the Ball Rain task, with moving visual stimuli and fast-paced requirements for selective attention. RESULTS There were no contralesional visuoattentive deficits according to the cancellation task. However, in the Lateralized Targets Computer Task, RH patients missed significantly more left-sided than right-sided targets in bilateral trials. This omission distribution differed significantly from those of the controls and LH patients. In the assessment of non-lateralized attention, RH and LH patients missed significantly more Ball Rain targets than controls in both the left and right hemifields. CONCLUSIONS Computer-based assessment sensitively reveals various aspects of visuoattentive deficits in unilateral stroke. Patients with either right or left hemisphere stroke demonstrate non-lateralized visual inattention. In right hemisphere stroke, these symptoms can be accompanied by subtle contralesional visuoattentive deficits that have remained unnoticed in cancellation task.
Collapse
|
7
|
Gerafi J, Samuelsson H, Viken JI, Jern C, Blomstrand C, Jood K. The presence and prediction of lateralized inattention 7 years post-stroke. Acta Neurol Scand 2020; 141:423-430. [PMID: 31930478 DOI: 10.1111/ane.13221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Lateralized inattention is a typical sign of neglect and related to poor functional outcome. Knowledge of the long-term course of this phenomenon is limited. The purpose of this study was to investigate presence and predictors for signs of lateralized inattention 7 years after stroke. METHODS From a cohort of acute ischemic stroke patients, aged 18-69 years (n = 297), a consecutive series of 188 survivors without recurrent stroke at follow-up 7 years later were included. Within the first week after stroke onset, stroke severity was assessed according to the Scandinavian Stroke Scale. Target omissions, asymmetry of omissions, and perceptual speed according to Star- and Letter Cancellation Tests were also assessed. Presence of lateralized inattention at the 7-year follow-up was investigated with the Star- and Letter Cancellation Tests and with the neglect item in the National Institutes of Health Stroke Scale. RESULTS At the follow-up, 22 (11.7%) participants had lateralized inattention and the multivariable regression showed that independent significant baseline predictors were total omissions in target cancellations (P < .001) and inferior baseline performance on visual processing speed (P = .008). CONCLUSION About one of ten individuals exhibited signs of lateralized inattention 7 years after stroke. Baseline performance in perceptual processing speed and target omissions independently predicted presence of late signs of lateralized inattention. This is the first time processing speed is recognized as a significant predictor of lateralized inattention several years after the stroke incidence, indicating that the longitudinal course of processing speed following stroke is a critical subject for future research.
Collapse
Affiliation(s)
- Joel Gerafi
- Faculty of Social Sciences Department of Psychology University of Gothenburg Gothenburg Sweden
- Department of Clinical Neuroscience Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Department of Cognitive Neuroscience and Philosophy, Institute of Bioscience University of Skövde Skövde Sweden
- The Skaraborg Institute for Research and Development Skövde Sweden
| | - Hans Samuelsson
- Faculty of Social Sciences Department of Psychology University of Gothenburg Gothenburg Sweden
- Department of Clinical Neuroscience Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Jo I. Viken
- Faculty of Social Sciences Department of Psychology University of Gothenburg Gothenburg Sweden
- Department of Clinical Neuroscience Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Christina Jern
- Department of Laboratory Medicine Institute of Biomedicine The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Christian Blomstrand
- Department of Clinical Neuroscience Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Department of Neurology The Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|