1
|
Garrey SM, Katolik A, Prekeris M, Li X, York K, Bernards S, Fields S, Zhao R, Damha MJ, Hesselberth JR. A homolog of lariat-debranching enzyme modulates turnover of branched RNA. RNA (NEW YORK, N.Y.) 2014; 20:1337-48. [PMID: 24919400 PMCID: PMC4105757 DOI: 10.1261/rna.044602.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Turnover of the branched RNA intermediates and products of pre-mRNA splicing is mediated by the lariat-debranching enzyme Dbr1. We characterized a homolog of Dbr1 from Saccharomyces cerevisiae, Drn1/Ygr093w, that has a pseudo-metallophosphodiesterase domain with primary sequence homology to Dbr1 but lacks essential active site residues found in Dbr1. Whereas loss of Dbr1 results in lariat-introns failing broadly to turnover, loss of Drn1 causes low levels of lariat-intron accumulation. Conserved residues in the Drn1 C-terminal CwfJ domains, which are not present in Dbr1, are required for efficient intron turnover. Drn1 interacts with Dbr1, components of the Nineteen Complex, U2 snRNA, branched intermediates, and products of splicing. Drn1 enhances debranching catalyzed by Dbr1 in vitro, but does so without significantly improving the affinity of Dbr1 for branched RNA. Splicing carried out in in vitro extracts in the absence of Drn1 results in an accumulation of branched splicing intermediates and products released from the spliceosome, likely due to less active debranching, as well as the promiscuous release of cleaved 5'-exon. Drn1 enhances Dbr1-mediated turnover of lariat-intermediates and lariat-intron products, indicating that branched RNA turnover is regulated at multiple steps during splicing.
Collapse
Affiliation(s)
- Stephen M Garrey
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Mantas Prekeris
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Sarah Bernards
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Webb CJ, Romfo CM, van Heeckeren WJ, Wise JA. Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin. Genes Dev 2005; 19:242-54. [PMID: 15625190 PMCID: PMC545887 DOI: 10.1101/gad.1265905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 11/11/2004] [Indexed: 12/17/2022]
Abstract
Discrete sequence elements known as exonic splicing enhancers (ESEs) have been shown to influence both the efficiency of splicing and the profile of mature mRNAs in multicellular eukaryotes. While the existence of ESEs has not been demonstrated previously in unicellular eukaryotes, the factors known to recognize these elements and mediate their communication with the core splicing machinery are conserved and essential in the fission yeast Schizosaccharomyces pombe. Here, we provide evidence that ESE function is conserved through evolution by demonstrating that three exonic splicing enhancers derived from vertebrates (chicken ASLV, mouse IgM, and human cTNT) promote splicing of two distinct S. pombe pre-messenger RNAs (pre-mRNAs). Second, as in extracts from mammalian cells, ESE function in S. pombe is compromised by mutations and increased distance from the 3'-splice site. Third, three-hybrid analyses indicate that the essential SR (serine/arginine-rich) protein Srp2p, but not the dispensable Srp1p, binds specifically to both native and heterologous purine-rich elements; thus, Srp2p is the likely mediator of ESE function in fission yeast. Finally, we have identified five natural purine-rich elements from S. pombe that promote splicing of our reporter pre-mRNAs. Taken together, these results provide strong evidence that the genesis of ESE-mediated splicing occurred early in eukaryotic evolution.
Collapse
Affiliation(s)
- Christopher J Webb
- School of Medicine, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
3
|
Katz L, Burge CB. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res 2003; 13:2042-51. [PMID: 12952875 PMCID: PMC403678 DOI: 10.1101/gr.1257503] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Redundancy of the genetic code dictates that a given protein can be encoded by a large collection of distinct mRNA species, potentially allowing mRNAs to simultaneously optimize desirable RNA structural features in addition to their protein-coding function. To determine whether natural mRNAs exhibit biases related to local RNA secondary structure, a new randomization procedure was developed, DicodonShuffle, which randomizes mRNA sequences while preserving the same encoded protein sequence, the same codon usage, and the same dinucleotide composition as the native message. Genes from 10 of 14 eubacterial species studied and one eukaryote, the yeast Saccharomyces cerevisiae, exhibited statistically significant biases in favor of local RNA structure as measured by folding free energy. Several significant associations suggest functional roles for mRNA structure, including stronger secondary structure bias in the coding regions of intron-containing yeast genes than in intronless genes, and significantly higher folding potential in polycistronic messages than in monocistronic messages in Escherichia coli. Potential secondary structure generally increased in genes from the 5' to the 3' end of E. coli operons, and secondary structure potential was conserved in homologous Salmonella typhi operons. These results are interpreted in terms of possible roles of RNA structures in RNA processing, regulation of mRNA stability, and translational control.
Collapse
MESH Headings
- Computational Biology/methods
- Computational Biology/statistics & numerical data
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Fungal
- Genes, Bacterial
- Genes, Fungal
- Introns/genetics
- Nucleic Acid Conformation
- Open Reading Frames
- Operon/genetics
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Stability/genetics
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- Saccharomyces cerevisiae/genetics
- Thermodynamics
Collapse
Affiliation(s)
- Luba Katz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
4
|
Affiliation(s)
- Leslie Grate
- Department of Computer Science and Engineering, Baskin School of Engineering, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
5
|
Libri D, Duconge F, Levy L, Vinauger M. A role for the Psi-U mismatch in the recognition of the 5' splice site of yeast introns by the U1 small nuclear ribonucleoprotein particle. J Biol Chem 2002; 277:18173-81. [PMID: 11877437 DOI: 10.1074/jbc.m112460200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein particle (snRNP)/5' splice site (5'SS) interaction in yeast is essential for the splicing process and depends on the formation of a short RNA duplex between the 5' arm of U1 snRNA and the 1st intronic nucleotides. This RNA/RNA interaction is characterized by the presence of a mismatch that occurs with almost all yeast introns and concerns nucleotides 4 on the pre-mRNA (a U) and 5 on U1 snRNA (a Psi). The latter nucleotide is well conserved from yeast to vertebrates, but its role in yeast and the significance of the associated mismatch in the U1 snRNA/5'SS interaction have never been fully explained. We report here that the presence of this mismatch is a determinant of stability that mainly affects the off rate of the interaction. To our knowledge this is the first report assigning a function to this noncanonical interaction. We also performed SELEX (systematic evolution of ligands by exponential enrichment) experiments by immunoprecipitating U1 snRNP and the associated RNA. The artificial phylogeny derived from these experiments allows the isolation of the selective pressure due to U1 snRNP binding on the 5'SS of yeast introns.
Collapse
Affiliation(s)
- Domenico Libri
- Centre de Génétique Moléculaire, CNRS, 91190 Gif sur Yvette, France.
| | | | | | | |
Collapse
|
6
|
Boukis LA, Bruzik JP. Functional selection of splicing enhancers that stimulate trans-splicing in vitro. RNA (NEW YORK, N.Y.) 2001; 7:793-805. [PMID: 11421358 PMCID: PMC1370131 DOI: 10.1017/s1355838201010524] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The role of exonic sequences in naturally occurring trans-splicing has not been explored in detail. Here, we have identified trans-splicing enhancers through the use of an iterative selection scheme. Several classes of enhancer sequences were identified that led to dramatic increases in trans-splicing efficiency. Two sequence families were investigated in detail. These include motifs containing the element (G/C)GAC(G/C) and also 5' splice site-like sequences. Distinct elements were tested for their ability to function as splicing enhancers and in competition experiments. In addition, discrete trans-acting factors were identified. This work demonstrates that splicing enhancers are able to effect a large increase in trans-splicing efficiency and that the process of exon definition is able to positively enhance trans-splicing even though the reaction itself is independent of the need for the 5' end of U1 snRNA. Due to the presence of internal introns in messages that are trans-spliced, the natural arrangement of 5' splice sites downstream of trans-splicing acceptors may lead to a general promotion of this unusual reaction.
Collapse
Affiliation(s)
- L A Boukis
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|