1
|
Wu J, Yu S, Wang Y, Zhu J, Zhang Z. New insights into the role of ribonuclease P protein subunit p30 from tumor to internal reference. Front Oncol 2022; 12:1018279. [PMID: 36313673 PMCID: PMC9606464 DOI: 10.3389/fonc.2022.1018279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P protein subunit p30 (RPP30) is a highly conserved housekeeping gene that exists in many species and tissues throughout the three life kingdoms (archaea, bacteria, and eukaryotes). RPP30 is closely related to a few types of tumors in human diseases but has a very stable transcription level in most cases. Based on this feature, increasing number of studies have used RPP30 as an internal reference gene. Here, the structure and basic functions of RPP30 are summarized and the likely relationship between RPP30 and various diseases in plants and human is outlined. Finally, the current application of RPP30 as an internal reference gene and its advantages over traditional internal reference genes are reviewed. RPP30 characteristics suggest that it has a good prospect of being selected as an internal reference; more work is needed to develop this research avenue.
Collapse
Affiliation(s)
- Junchao Wu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Sijie Yu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yalan Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Abu-Zhayia ER, Khoury-Haddad H, Guttmann-Raviv N, Serruya R, Jarrous N, Ayoub N. A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks. Sci Rep 2017; 7:1002. [PMID: 28432356 PMCID: PMC5430778 DOI: 10.1038/s41598-017-01185-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to advance the understanding of the molecular mechanisms by which cells keep their genetic material intact. Here, we show that the core protein subunits Rpp29 and Rpp21 of human RNase P complex are implicated in DDR. We demonstrate that Rpp29 and Rpp21 depletion impairs double-strand break (DSB) repair by homology-directed repair (HDR), but has no deleterious effect on the integrity of non-homologous end joining. We also demonstrate that Rpp29 and Rpp21, but not Rpp14, Rpp25 and Rpp38, are rapidly and transiently recruited to laser-microirradiated sites. Rpp29 and Rpp21 bind poly ADP-ribose moieties and are recruited to DNA damage sites in a PARP1-dependent manner. Remarkably, depletion of the catalytic H1 RNA subunit diminishes their recruitment to laser-microirradiated regions. Moreover, RNase P activity is augmented after DNA damage in a PARP1-dependent manner. Altogether, our results describe a previously unrecognized function of the RNase P subunits, Rpp29 and Rpp21, in fine-tuning HDR of DSBs.
Collapse
Affiliation(s)
- Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hanan Khoury-Haddad
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Noga Guttmann-Raviv
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Raphael Serruya
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
3
|
Richman TR, Spåhr H, Ermer JA, Davies SMK, Viola HM, Bates KA, Papadimitriou J, Hool LC, Rodger J, Larsson NG, Rackham O, Filipovska A. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun 2016; 7:11884. [PMID: 27319982 PMCID: PMC4915168 DOI: 10.1038/ncomms11884] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. Mutations in the translational activator of cytochrome c oxidase subunit I (TACO1) causes cytochrome c oxidase deficiency and Leigh Syndrome in patients. Here, the authors characterize mice with a mutation that causes lack of TACO1 expression, identifying a mouse model that could be useful for preclinical trials.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Stefan M K Davies
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Helena M Viola
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - John Papadimitriou
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
4
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
5
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
6
|
Khanova E, Esakova O, Perederina A, Berezin I, Krasilnikov AS. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions. RNA (NEW YORK, N.Y.) 2012; 18:720-8. [PMID: 22332141 PMCID: PMC3312559 DOI: 10.1261/rna.030874.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
7
|
Perederina A, Khanova E, Quan C, Berezin I, Esakova O, Krasilnikov AS. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP. RNA (NEW YORK, N.Y.) 2011; 17:1922-31. [PMID: 21878546 PMCID: PMC3185923 DOI: 10.1261/rna.2855511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/27/2011] [Indexed: 05/22/2023]
Abstract
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chao Quan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
8
|
Reiner R, Alfiya-Mor N, Berrebi-Demma M, Wesolowski D, Altman S, Jarrous N. RNA binding properties of conserved protein subunits of human RNase P. Nucleic Acids Res 2011; 39:5704-14. [PMID: 21450806 PMCID: PMC3141246 DOI: 10.1093/nar/gkr126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme.
Collapse
Affiliation(s)
- Robert Reiner
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Pollock C, Daily K, Nguyen VT, Wang C, Lewandowska MA, Bensaude O, Huang S. Characterization of MRP RNA-protein interactions within the perinucleolar compartment. Mol Biol Cell 2011; 22:858-67. [PMID: 21233287 PMCID: PMC3057709 DOI: 10.1091/mbc.e10-09-0768] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The PNC is a nuclear body that forms in malignant cells. We characterize a newly identified complex in the PNC; determine the dynamics of PNC proteins; and describe the recruitment, localization, and sedimentation properties of PNC components. The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA–processing (MRP) RNA, pyrimidine tract–binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA–containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)–PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA–protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC.
Collapse
Affiliation(s)
- Callie Pollock
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Stamatopoulou V, Toumpeki C, Tzakos A, Vourekas A, Drainas D. Domain Architecture of the DRpp29 Protein and Its Interaction with the RNA Subunit of Dictyostelium discoideum RNase P. Biochemistry 2010; 49:10714-27. [DOI: 10.1021/bi101297z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Chrisavgi Toumpeki
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Andreas Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Anastassios Vourekas
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| |
Collapse
|
11
|
Kurata R, Nakaoka H, Tajima A, Hosomichi K, Shiina T, Meguro A, Mizuki N, Ohono S, Inoue I, Inoko H. TRIM39 and RNF39 are associated with Behçet’s disease independently of HLA-B∗51 and -A∗26. Biochem Biophys Res Commun 2010; 401:533-7. [DOI: 10.1016/j.bbrc.2010.09.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
|
12
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
13
|
Hands-Taylor KLD, Martino L, Tata R, Babon JJ, Bui TT, Drake AF, Beavil RL, Pruijn GJM, Brown PR, Conte MR. Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Res 2010; 38:4052-66. [PMID: 20215441 PMCID: PMC2896528 DOI: 10.1093/nar/gkq141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 01/15/2023] Open
Abstract
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20-Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.
Collapse
Affiliation(s)
- Katherine L. D. Hands-Taylor
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Renée Tata
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Jeffrey J. Babon
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Tam T. Bui
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Rebecca L. Beavil
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Paul R. Brown
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Mattijssen S, Welting TJM, Pruijn GJM. RNase MRP and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:102-16. [DOI: 10.1002/wrna.9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandy Mattijssen
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Center Maastricht, The Netherlands
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2009; 584:287-96. [PMID: 19931535 DOI: 10.1016/j.febslet.2009.11.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
For an enzyme functioning predominantly in a seemingly housekeeping role of 5' tRNA maturation, RNase P displays a remarkable diversity in subunit make-up across the three domains of life. Despite the protein complexity of this ribonucleoprotein enzyme increasing dramatically from bacteria to eukarya, the catalytic function rests with the RNA subunit during evolution. However, the recent demonstration of a protein-only human mitochondrial RNase P has added further intrigue to the compositional variability of this enzyme. In this review, we discuss some possible reasons underlying the structural diversity of the active sites, and use them as thematic bases for elaborating new directions to understand how functional variations might have contributed to the complex evolution of RNase P.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
17
|
Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP. Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions. J Mol Biol 2009; 393:1043-55. [PMID: 19733182 DOI: 10.1016/j.jmb.2009.08.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/28/2009] [Accepted: 08/30/2009] [Indexed: 01/05/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg(2+)-dependent 5' maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from 1 in bacteria to 9 or 10 in eukarya. The archaeal RPR is associated with at least 4 RPPs, which function in pairs (RPP21-RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21-RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme.
Collapse
Affiliation(s)
- Yiren Xu
- Ohio State Biochemistry Program, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
18
|
Amero CD, Boomershine WP, Xu Y, Foster M. Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner. Biochemistry 2008; 47:11704-10. [PMID: 18922021 PMCID: PMC2650222 DOI: 10.1021/bi8015982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5'-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentrations, four protein subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30, and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus ( Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha-helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step toward understanding structure-function relationships of the archaeal RNase P holoenzyme.
Collapse
Affiliation(s)
- Carlos D Amero
- Biophysics Program, Ohio State University, Columbus OH 43210
| | | | - Yiren Xu
- Department of Biochemistry, Ohio State University, Columbus OH 43210
| | - Mark Foster
- Biophysics Program, Ohio State University, Columbus OH 43210
- Department of Biochemistry, Ohio State University, Columbus OH 43210
| |
Collapse
|
19
|
Roberts JD, Chiche JD, Kolpa EM, Bloch DB, Bloch KD. cGMP-dependent protein kinase I interacts with TRIM39R, a novel Rpp21 domain-containing TRIM protein. Am J Physiol Lung Cell Mol Physiol 2007; 293:L903-12. [PMID: 17601797 DOI: 10.1152/ajplung.00157.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide modulates vascular smooth muscle cell (SMC) cytoskeletal kinetics and phenotype, in part, by stimulating cGMP-dependent protein kinase I (PKGI). To identify molecular targets of PKGI, an interaction trap screen in yeast was performed using a cDNA encoding the catalytic region of PKGI and a human lung cDNA library. We identified a cDNA that encodes a putative PKGI-interactor that is a novel variant of TRIM39, a member of the really interesting new gene (RING) finger family of proteins. Although this TRIM39 variant encodes the NH(2)-terminal RING finger (RF), B-box, and coiled-coil (RBBC) domains of TRIM39, instead of a complete COOH-terminal B30.2 domain, this TRIM39 isoform contains the COOH-terminal portion of Rpp21, a component of RNase P. RT-PCR demonstrated that the TRIM39 variant, which we refer to as TRIM39R, is transcribed in the human fetal lung and in rat pulmonary artery SMC. Indirect immunofluorescence using an antibody generated against the conserved domains of TRIM39 and TRIM39R revealed the proteins in speckled intranuclear structures in human acute monocytic leukemia (THP-1) and human epidermal carcinoma line (HEp-2) cells. PKGI phosphorylated a typical PKGI/PKA phosphorylation domain in a conserved region of TRIM39 and TRIM39R. Additional studies demonstrated that PKGI interacts with both isoforms of TRIM39 in yeast cells and phosphorylates both isoforms of TRIM39 in human cell lines. Although PKGI has been observed to interact with proteins that regulate cytoskeletal function and gene expression, this investigation shows for the first time that PKGI interacts with tripartite motif (TRIM) proteins, which, through diverse molecular pathways, are often observed to regulate important aspects of cellular homeostasis.
Collapse
|
20
|
Aspinall TV, Gordon JM, Bennett HJ, Karahalios P, Bukowski JP, Walker SC, Engelke DR, Avis JM. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 2007; 35:6439-50. [PMID: 17881380 PMCID: PMC2095792 DOI: 10.1093/nar/gkm553] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein–RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein–protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.
Collapse
Affiliation(s)
- Tanya V. Aspinall
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - James M.B. Gordon
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Hayley J. Bennett
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Panagiotis Karahalios
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - John-Paul Bukowski
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Scott C. Walker
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - David R. Engelke
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Johanna M. Avis
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
- *To whom correspondence should be addressed. +44 161 306 4216+44 161 306 5201
| |
Collapse
|
21
|
Vourekas A, Kalavrizioti D, Zarkadis IK, Spyroulias GA, Stathopoulos C, Drainas D. A 40.7 kDa Rpp30/Rpp1 homologue is a protein subunit of Dictyostelium discoideum RNase P holoenzyme. Biochimie 2007; 89:301-10. [PMID: 17207566 DOI: 10.1016/j.biochi.2006.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 11/24/2006] [Indexed: 11/25/2022]
Abstract
RNase P is an essential and ubiquitous endonuclease that mediates the maturation of the 5' ends of all precursor tRNA molecules. The holoenzyme from Dictyostelium discoideum possesses RNA and protein subunits essential for activity, but the exact composition of the ribonucleoprotein complex is still under investigation. Bioinformatic analysis of D. discoideum genome identified seven open reading frames encoding candidate RNase P protein subunits. The gene named drpp30 encodes a protein with a predicted molecular mass of 40.7 kDa that clusters with Rpp1 and Rpp30 RNase P protein subunits from Saccharomyces cerevisiae and human respectively, which have significantly lower molecular masses. Cloning and heterologous expression of DRpp30 followed by immunochemical analysis of RNase P active fractions demonstrates its association with RNase P holoenzyme. Furthermore, we show that DRpp30 can bind D. discoideum RNase P RNA and tRNA transcripts in vitro, giving a first insight of its possible role in D. discoideum RNase P function. Homology modeling using as a template the archaeal Ph1887p, and molecular dynamics simulations of the modeled structure suggest that DRpp30 adopts a TIM-barrel fold.
Collapse
|
22
|
Sparanese D, Lee CH. CRD-BP shields c-myc and MDR-1 RNA from endonucleolytic attack by a mammalian endoribonuclease. Nucleic Acids Res 2007; 35:1209-21. [PMID: 17264115 PMCID: PMC1851641 DOI: 10.1093/nar/gkl1148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The c-myc mRNA coding region determinant-binding protein (CRD-BP) has high affinity for the coding region determinant (CRD) of c-myc mRNA. Such affinity is believed to protect c-myc CRD from endonucleolytic attack. We have recently purified a mammalian endoribonuclease which can cleave within the c-myc CRD in vitro. The availability of this purified endonuclease has made it possible to directly test the interaction between CRD-BP and the endonuclease in regulating c-myc CRD RNA cleavage. In this study, we have identified the coding region of MDR-1 RNA as a new target for CRD-BP. CRD-BP has the same affinity for c-myc CRD nts 1705-1886 and MDR-1 RNA nts 746-962 with K(d) of 500 nM. The concentration-dependent affinity of CRD-BP to these transcripts correlated with the concentration-dependent blocking of endonuclease-mediated cleavage by CRD-BP. In contrast, three other recombinant proteins tested which had no affinity for c-myc CRD did not block endonuclease-mediated cleavage. Finally, we have identified RNA sequences required for CRD-BP binding. These results provide the first direct evidence that CRD-BP can indeed protect c-myc CRD cleavage initiated by an endoribonuclease, and the framework for further investigation into the interactions between CRD-BP, c-myc mRNA, MDR-1 mRNA and the endoribonuclease in cells.
Collapse
Affiliation(s)
| | - Chow H. Lee
- *To whom correspondence should be addressed. Tel: +250 960 5413; Fax: +250 960 5170;
| |
Collapse
|
23
|
Welting TJM, Peters FMA, Hensen SMM, van Doorn NL, Kikkert BJ, Raats JMH, van Venrooij WJ, Pruijn GJM. Heterodimerization regulates RNase MRP/RNase P association, localization, and expression of Rpp20 and Rpp25. RNA (NEW YORK, N.Y.) 2007; 13:65-75. [PMID: 17119099 PMCID: PMC1705748 DOI: 10.1261/rna.237807] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rpp20 and Rpp25 are subunits of the human RNase MRP and RNase P endoribonucleases belonging to the Alba superfamily of nucleic acid binding proteins. These proteins, which bind very strongly to each other, transiently associate with RNase MRP. Here, we show that the Rpp20-Rpp25 heterodimer is resistant to both high concentrations of salt and a nonionic detergent. The interaction of Rpp20 and Rpp25 with the P3 domain of the RNase MRP RNA appeared to be strongly enhanced by their heterodimerization. Coimmunoprecipitation experiments demonstrated that only a single copy of each of these proteins is associated with the RNase MRP and RNase P particles in HEp-2 cells. Both proteins accumulate in the nucleoli, which in case of Rpp20 is strongly dependent on its interaction with Rpp25. Finally, the results of overexpression and knock-down experiments indicate that their expression levels are codependent. Taken together, these data indicate that the Rpp20-Rpp25 heterodimerization regulates their RNA-binding activity, subcellular localization, and expression, which suggests that their interaction is also crucial for their role in RNase MRP/P function.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rosenblad MA, López MD, Piccinelli P, Samuelsson T. Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 2006; 34:5145-56. [PMID: 16998185 PMCID: PMC1636426 DOI: 10.1093/nar/gkl626] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNases P and MRP are involved in tRNA and rRNA processing, respectively. Both enzymes in eukaryotes are composed of an RNA molecule and 9–12 protein subunits. Most of the protein subunits are shared between RNases P and MRP. We have here performed a computational analysis of the protein subunits in a broad range of eukaryotic organisms using profile-based searches and phylogenetic methods. A number of novel homologues were identified, giving rise to a more complete inventory of RNase P/MRP proteins. We present evidence of a relationship between fungal Pop8 and the protein subunit families Rpp14/Pop5 as well as between fungal Pop6 and metazoan Rpp25. These relationships further emphasize a structural and functional similarity between the yeast and human P/MRP complexes. We have also identified novel P and MRP RNAs and analysis of all available sequences revealed a K-turn motif in a large number of these RNAs. We suggest that this motif is a binding site for the Pop3/Rpp38 proteins and we discuss other structural features of the RNA subunit and possible relationships to the protein subunit repertoire.
Collapse
Affiliation(s)
| | | | | | - Tore Samuelsson
- To whom correspondence should be addressed. Tel: +46 31 773 34 68; Fax: +46 31 41 61 08;
| |
Collapse
|
25
|
Welting TJM, Kikkert BJ, van Venrooij WJ, Pruijn GJM. Differential association of protein subunits with the human RNase MRP and RNase P complexes. RNA (NEW YORK, N.Y.) 2006; 12:1373-82. [PMID: 16723659 PMCID: PMC1484433 DOI: 10.1261/rna.2293906] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Evans D, Marquez SM, Pace NR. RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 2006; 31:333-41. [PMID: 16679018 DOI: 10.1016/j.tibs.2006.04.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/07/2006] [Accepted: 04/24/2006] [Indexed: 01/27/2023]
Abstract
Ribonuclease P (RNase P) is an endonuclease involved in processing tRNA. It contains both RNA and protein subunits and occurs in all three domains of life: namely, Archaea, Bacteria and Eukarya. The RNase P RNA subunits from bacteria and some archaea are catalytically active in vitro, whereas those from eukaryotes and most archaea require protein subunits for activity. RNase P has been characterized biochemically and genetically in several systems, and detailed structural information is emerging for both RNA and protein subunits from phylogenetically diverse organisms. In vitro reconstitution of activity is providing insight into the role of proteins in the RNase P holoenzyme. Together, these findings are beginning to impart an understanding of the coevolution of the RNA and protein worlds.
Collapse
Affiliation(s)
- Donald Evans
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
27
|
Zhu Y, Stribinskis V, Ramos KS, Li Y. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA (NEW YORK, N.Y.) 2006; 12:699-706. [PMID: 16540690 PMCID: PMC1440897 DOI: 10.1261/rna.2284906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5' termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution.
Collapse
Affiliation(s)
- Yanglong Zhu
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
29
|
Wilson RC, Bohlen CJ, Foster MP, Bell CE. Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A 2006; 103:873-8. [PMID: 16418270 PMCID: PMC1347986 DOI: 10.1073/pnas.0508004103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Indexed: 11/18/2022] Open
Abstract
We have used NMR spectroscopy and x-ray crystallography to determine the three-dimensional structure of PF1378 (Pfu Pop5), one of four protein subunits of archaeal RNase P that shares a homolog in the eukaryotic enzyme. RNase P is an essential and ubiquitous ribonucleoprotein enzyme required for maturation of tRNA. In bacteria, the enzyme's RNA subunit is responsible for cleaving the single-stranded 5' leader sequence of precursor tRNA molecules (pre-tRNA), whereas the protein subunit assists in substrate binding. Although in bacteria the RNase P holoenzyme consists of one large catalytic RNA and one small protein subunit, in archaea and eukarya the enzyme contains several (> or =4) protein subunits, each of which lacks sequence similarity to the bacterial protein. The functional role of the proteins is poorly understood, as is the increased complexity in comparison to the bacterial enzyme. Pfu Pop5 has been directly implicated in catalysis by the observation that it pairs with PF1914 (Pfu Rpp30) to functionally reconstitute the catalytic domain of the RNA subunit. The protein adopts an alpha-beta sandwich fold highly homologous to the single-stranded RNA binding RRM domain. Furthermore, the three-dimensional arrangement of Pfu Pop5's structural elements is remarkably similar to that of the bacterial protein subunit. NMR spectra have been used to map the interaction of Pop5 with Pfu Rpp30. The data presented permit tantalizing hypotheses regarding the role of this protein subunit shared by archaeal and eukaryotic RNase P.
Collapse
Affiliation(s)
- Ross C Wilson
- Ohio State Biochemistry Program, Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
30
|
Hall TA, Brown JW. Interactions between RNase P protein subunits in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:247-54. [PMID: 15810434 PMCID: PMC2685574 DOI: 10.1155/2004/743956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A yeast two-hybrid system was used to identify protein-protein interactions between the ribonuclease P (RNase P) protein subunits Mth11p, Mth687p, Mth688p and Mth1618p from the archaeon Methanothermobacter thermoautotrophicus. Clear interactions between Mth688p and Mth687p, and between Mth1618p and Mth11p, were confirmed by HIS3 and LacZ reporter expression. Weaker interactions of Mth687p and Mth688p with Mth 11p, and Mth11p with itself, are also suggested. These interactions resemble, and confirm, those previously seen among the homologs of these proteins in the more complex yeast RNase P holoenzyme.
Collapse
Affiliation(s)
- Thomas A. Hall
- Ibis Therapeutics, 2292 Faraday Ave., Carlsbad, CA 92008, USA
| | - James W. Brown
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
- Corresponding author ()
| |
Collapse
|
31
|
Dlakić M. 3D models of yeast RNase P/MRP proteins Rpp1p and Pop3p. RNA (NEW YORK, N.Y.) 2005; 11:123-127. [PMID: 15613537 PMCID: PMC1370701 DOI: 10.1261/rna.7128905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 11/08/2004] [Indexed: 05/24/2023]
Abstract
Sensitive profile searches and fold recognition were used to predict the structures of two yeast RNase P/MRP proteins. Rpp1p, which is one of the subunits common to eukaryotes and archaea, is predicted to adopt the seven-stranded TIM-barrel fold found in PHP phosphoesterases. Pop3p, initially thought to be one of the RNase P/MRP subunits unique to yeast, has been assigned the L7Ae/L30e fold. This RNA-binding fold is also present in human RNase P subunit Rpp38, raising the possibility that Pop3p and Rpp38 are functional homologs.
Collapse
|
32
|
Numata T, Ishimatsu I, Kakuta Y, Tanaka I, Kimura M. Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp29. RNA (NEW YORK, N.Y.) 2004; 10:1423-32. [PMID: 15317976 PMCID: PMC1370628 DOI: 10.1261/rna.7560904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 06/01/2004] [Indexed: 05/24/2023]
Abstract
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded antiparallel beta-sheet (beta1-beta6) with a protruding beta-strand (beta7) at the C-terminal region. The strand beta7 forms an antiparallel beta-sheet by interacting with strand beta4 in a symmetry-related molecule, suggesting that strands beta4 and beta7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the beta-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal alpha-helices (alpha1-alpha4) and beta-strand beta6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands beta2 and beta3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P.
Collapse
Affiliation(s)
- Tomoyuki Numata
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
33
|
Welting TJM, van Venrooij WJ, Pruijn GJM. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Res 2004; 32:2138-46. [PMID: 15096576 PMCID: PMC407822 DOI: 10.1093/nar/gkh539] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The eukaryotic ribonuclease for mitochondrial RNA processing (RNase MRP) is mainly located in the nucleoli and belongs to the small nucleolar ribonucleoprotein (snoRNP) particles. RNase MRP is involved in the processing of pre-rRNA and the generation of RNA primers for mitochondrial DNA replication. A closely related snoRNP, which shares protein subunits with RNase MRP and contains a structurally related RNA subunit, is the pre-tRNA processing factor RNase P. Up to now, 10 protein subunits of these complexes have been described, designated hPop1, hPop4, hPop5, Rpp14, Rpp20, Rpp21, Rpp25, Rpp30, Rpp38 and Rpp40. To get more insight into the assembly of the human RNase MRP complex we studied protein-protein and protein-RNA interactions by means of GST pull-down experiments. A total of 19 direct protein-protein and six direct protein-RNA interactions were observed. The analysis of mutant RNase MRP RNAs showed that distinct regions are involved in the direct interaction with protein subunits. The results provide insight into the way the protein and RNA subunits assemble into a ribonucleoprotein particle. Based upon these data a new model for the architecture of the human RNase MRP complex was generated.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
34
|
Boomershine WP, McElroy CA, Tsai HY, Wilson RC, Gopalan V, Foster MP. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P. Proc Natl Acad Sci U S A 2003; 100:15398-403. [PMID: 14673079 PMCID: PMC307579 DOI: 10.1073/pnas.2535887100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA ( approximately 120 kDa) responsible for mediating catalysis, and a small protein cofactor ( approximately 15 kDa) that modulates substrate recognition and is required for efficient in vivo catalysis. In contrast, multiple proteins are associated with eukaryotic and archaeal RNase P, and these proteins exhibit no recognizable homology to the conserved bacterial protein subunit. In reconstitution experiments with recombinantly expressed and purified protein subunits, we found that Mth Rpp29, a homolog of the Rpp29 protein subunit from eukaryotic RNase P, is an essential protein component of the archaeal holoenzyme. Consistent with its role in mediating protein-RNA interactions, we report that Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. In addition to a structured beta-barrel core, it possesses unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues. To identify possible RNA contacts in the protein-RNA complex, we examined the interaction of the 11-kDa protein with the full 100-kDa Mth RNA subunit by using NMR chemical shift perturbation. Our findings represent a critical step toward a structural model of the RNase P holoenzyme from archaebacteria and higher organisms.
Collapse
|
35
|
Abstract
In 1996, a new method, termed the yeast three-hybrid system, dedicated to selection of RNA binding proteins using a hybrid RNA molecule as bait was described. In this minireview, we summarize the results that have been obtained using this method. Indeed, approximately 20 unknown proteins have been characterized so far. The three-hybrid strategy has also been used as a tool to dissect RNA-protein interactions. The example of such a study on human histone HBP interaction with its target mRNA is described. Problems that can be encountered are addressed in a troubleshooting section. Especially, our results with tRNA binding proteins are discussed.
Collapse
Affiliation(s)
- Sophie Jaeger
- Institut de Biologie Moléculaire et Cellulaire, UPR No. 9002 du CNRS, 15 rue René Descartes, 67084 Cedex, Strasbourg, France
| | | | | |
Collapse
|
36
|
Abstract
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Hagit Mann
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
37
|
Abstract
The 5'-end maturation of tRNAs is catalyzed by the ribonucleoprotein enzyme ribonuclease P (RNase P) in all organisms. Here we provide, for the first time, a comprehensive overview on the representation of individual RNase P protein homologs within the Eukarya and Archaea. Most eukaryotes have homologs for all four protein subunits (Pop4, Rpp1, Pop5 and Rpr2) present in the majority of Archaea. Pop4 is the only RNase P protein subunit identifiable in all Eukarya and Archaea with available genome sequences. Remarkably, there is no structural homology between bacterial and archaeal-eukaryotic RNase P proteins. The simplest interpretation is that RNase P has an 'RNA-alone' origin and progenitors of Bacteria and Archaea diverged very early in evolution and then pursued completely different strategies in the recruitment of protein subunits during the transition from the 'RNA-alone' to the 'RNA-protein' state of the enzyme.
Collapse
Affiliation(s)
- Enno Hartmann
- Institut für Biologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.
| | | |
Collapse
|
38
|
Van Eenennaam H, Vogelzangs JHP, Lugtenberg D, Van Den Hoogen FHJ, Van Venrooij WJ, Pruijn GJM. Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. ARTHRITIS AND RHEUMATISM 2002; 46:3266-72. [PMID: 12483731 DOI: 10.1002/art.10673] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To characterize the molecular identity of the Th/To autoantigen, which is targeted by autoantibodies in scleroderma and which is associated with the human RNase MRP and RNase P ribonucleoprotein complexes. METHODS Proteins immunoprecipitated by anti-Th/To+ patient antisera from biotinylated total HeLa cell extracts were analyzed by immunoblotting. The association of autoantigenic proteins with the RNase MRP complex was analyzed by reconstitution experiments and ultraviolet crosslinking. The reactivity of patient sera with all known RNase MRP/RNase P proteins was analyzed by immunoprecipitation of the individual recombinant proteins. RESULTS The previously defined Th40 autoantigen appeared to be identical to the Rpp38 protein. Paradoxically, Rpp38 did not bind to the P3 domain of the RNase MRP RNA, as suggested by previously published data for Th40, and only half of the anti-Th/To+ sera contained anti-Rpp38 reactivity. Two other RNase MRP/RNase P subunits, Rpp20 and Rpp25, were found to interact with the P3 domain. The previously reported 40-kd species associated with this domain appeared to consist of Rpp20 and/or Rpp25 associated with a nuclease-resistant RNA fragment. Finally, we demonstrated that almost all tested anti-Th/To+ patient sera contained autoantibodies to Rpp25 and hPop1, indicating that these proteins harbor the most frequently targeted Th/To determinants. CONCLUSION Our data unequivocally define the identity of the Th/To autoantigen and demonstrate that Th/To autoepitopes are found on several protein subunits of RNase MRP/RNase P.
Collapse
|
39
|
Li Y, Altman S. Partial reconstitution of human RNase P in HeLa cells between its RNA subunit with an affinity tag and the intact protein components. Nucleic Acids Res 2002; 30:3706-11. [PMID: 12202755 PMCID: PMC137421 DOI: 10.1093/nar/gkf499] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An RNA affinity tag was incorporated into the RNA subunit of human nuclear RNase P. The tagged RNA assembled with the protein components of RNase P inside HeLa cells to generate an active enzyme. Because of the specificity of the RNA tag to streptavidin, the reconstituted complex could be separated from the native enzyme and other ribonucleoproteins (particularly RNase MRP) by streptavidin agarose chromatography and could be recovered by the eluting agent, biotin. A mutant, tagged RNase P RNA, whose P3 domain was partially replaced, could not reconstitute with the proteins to yield an active enzyme. The P3 domain, therefore, is critical for the structure and function of RNase P.
Collapse
Affiliation(s)
- Yong Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | | |
Collapse
|
40
|
Houser-Scott F, Xiao S, Millikin CE, Zengel JM, Lindahl L, Engelke DR. Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. Proc Natl Acad Sci U S A 2002; 99:2684-9. [PMID: 11880623 PMCID: PMC122408 DOI: 10.1073/pnas.052586299] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2001] [Indexed: 12/28/2022] Open
Abstract
Ribonuclease P (RNase P) is a ubiquitous endoribonuclease that cleaves precursor tRNAs to generate mature 5' termini. Although RNase P from all kingdoms of life have been found to have essential RNA subunits, the number and size of the protein subunits ranges from one small protein in bacteria to at least nine proteins of up to 100 kDa. In Saccharomyces cerevisiae nuclear RNase P, the enzyme is composed of ten subunits: a single RNA and nine essential proteins. The spatial organization of these components within the enzyme is not yet understood. In this study we examine the likely binary protein-protein and protein-RNA subunit interactions by using directed two- and three-hybrid tests in yeast. Only two protein subunits, Pop1p and Pop4p, specifically bind the RNA subunit. Pop4p also interacted with seven of the other eight protein subunits. The remaining protein subunits all showed one or more specific protein-protein interactions with the other integral protein subunits. Of particular interest was the behavior of Rpr2p, the only protein subunit found in RNase P but not in the closely related enzyme, RNase MRP. Rpr2p interacts strongly with itself as well as with Pop4p. Similar interactions with self and Pop4p were also detected for Snm1p, the only unique protein subunit so far identified in RNase MRP. This observation is consistent with Snm1p and Rpr2p serving analogous functions in the two enzymes. This study provides a low-resolution map of the multisubunit architecture of the ribonucleoprotein enzyme, nuclear RNase P from S. cerevisiae.
Collapse
Affiliation(s)
- Felicia Houser-Scott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hall TA, Brown JW. Archaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins. RNA (NEW YORK, N.Y.) 2002; 8:296-306. [PMID: 12003490 PMCID: PMC1370252 DOI: 10.1017/s1355838202028492] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although archaeal RNase P RNAs are similar in both sequence and structure to those of Bacteria rather than eukaryotes, and heterologous reconstitution between the Bacillus subtilis RNase P protein and some archaeal RNase P RNAs has been demonstrated, no archaeal protein sequences with similarity to any known bacterial RNase P protein subunit have been identified, and the density of Methanothermobacter thermoautotrophicus RNase P in Cs2SO4 (1.42 g/mL) is inconsistent with a single small bacterial-like protein subunit. Four hypothetical open reading frames (MTH11, MTH687, MTH688, and MTH1618) were identified in the genome of M. thermoautotrophicus that have sequence similarity to four of the nine Saccharomyces cerevisiae RNase P protein subunits: Pop4p, Pop5p, Rpp1p, and Rpr2p, respectively. Polyclonal antisera generated to recombinant Mth11p, Mth687p, Mth688p, and Mth1618p each recognized a protein of the predicted molecular weight in western blots of partially purified M. thermoautotrophicus RNase P, and immunoprecipitated RNase P activity from the same partially purified preparation. RNase P in Archaea is therefore composed of an RNA subunit similar to bacterial RNase P RNA and multiple protein subunits similar to those in the eukaryotic nucleus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Formation
- Blotting, Western
- Cell Nucleus/enzymology
- Centrifugation, Density Gradient
- Cesium/chemistry
- Chlorides/chemistry
- Chromatography, Affinity
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Eukaryotic Cells/enzymology
- Humans
- Methanobacterium/enzymology
- Molecular Sequence Data
- Precipitin Tests
- Protein Subunits
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/metabolism
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Rabbits
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Ribonuclease P
- Saccharomyces cerevisiae/enzymology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Thomas A Hall
- Department of Microbiology, North Carolina State University, Raleigh 27695-7615, USA
| | | |
Collapse
|
42
|
Guerrier-Takada C, Eder PS, Gopalan V, Altman S. Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P. RNA (NEW YORK, N.Y.) 2002; 8:290-295. [PMID: 12003489 PMCID: PMC1370251 DOI: 10.1017/s1355838202027954] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In HeLa cells, ribonuclease P (RNase P), the tRNA processing enzyme consists of an RNA subunit (H1 RNA) associated with at least nine protein subunits, Rpp14, Rpp20, Rpp21, Rpp29 (hPop4), Rpp30, Rpp38, Rpp40, hPop1, and hPop5 (18.8 kDa). We report here the cloning and immuno-biochemical analysis of Rpp25, another protein subunit of RNase P. Polyclonal rabbit antibodies raised against recombinant Rpp25 recognize their corresponding antigens in RNase P-containing fractions purified from HeLa cells, and they also precipitate active holoenzyme. Furthermore, this protein has general RNA binding properties.
Collapse
Affiliation(s)
- Cecilia Guerrier-Takada
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
43
|
Jarrous N. Human ribonuclease P: subunits, function, and intranuclear localization. RNA (NEW YORK, N.Y.) 2002; 8:1-7. [PMID: 11871657 PMCID: PMC1370226 DOI: 10.1017/s1355838202011184] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Catalytic complexes of nuclear ribonuclease P (RNase P) ribonucleoproteins are composed of several protein subunits that appear to have specific roles in enzyme function in tRNA processing. This review describes recent progress made in the characterization of human RNase P, its relationship with the ribosomal RNA processing ribonucleoprotein RNase MRP, and the unexpected evolutionary conservation of its subunits. A new model for the biosynthesis of human RNase P is presented, in which this process is dynamic, transcription-dependent, and implicates functionally distinct nuclear compartments in tRNA biogenesis.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
44
|
Abstract
Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Felicia Scott
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| |
Collapse
|