1
|
Garmash O, Gubina-Vakulik G, Vondrášek D. Histological Features of Oral Cavity Mucous Membrane Epithelium in Six-Month-Old Experimental Animals Born with Macrosomia. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019; 61:137-143. [PMID: 30664446 DOI: 10.14712/18059694.2018.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the histological features of the mucobuccal fold of oral cavity mucous membrane from the area of the masticatory teeth roots' projection in 6-month-old Wistar Albino Glaxo rats with fetal macrosomia. The animals were divided into groups according to the body weight, the body length, and the Quetelet index at birth. A morphological study was performed using the Leica SP8 AOBS laser scanning confocal microscope and a conventional light (Axiostar, Zeiss) microscopy. Morphometric parameters were used to estimate the degree of acanthosis development in the epithelium of the oral mucosa, which indicates the intensity of its proliferation. Numerous narrow and deep acanthotic outgrowths and densely located 'juvenile' epitheliocytes in the basal layer on the apex of the acanthotic protrusions were found in animals with fetal macrosomia that was due to intrauterine obesity. In these animals, the morphometric index, which we used, was maximally different from that in the control group. In animals with fetal macrosomia that was due to intrauterine growth acceleration of the body, the hyperproliferation of the mucous membrane epithelium of the oral cavity was absent or little pronounced. It can be assumed that fetal macrocosmia with obesity causes instability in the epithelium of the oral cavity mucosa, its rapid death, and therefore, a more active stimulation of proliferation.
Collapse
Affiliation(s)
- Olga Garmash
- Kharkiv National Medical University, Therapeutic Dentistry Department, Ukraine.
| | | | - David Vondrášek
- Institute of Physiology of the Czech Academy of Sciences, Department of Biomathematics, Czech Republic
| |
Collapse
|
2
|
Kubíková T, Kochová P, Tomášek P, Witter K, Tonar Z. Numerical and length densities of microvessels in the human brain: Correlation with preferential orientation of microvessels in the cerebral cortex, subcortical grey matter and white matter, pons and cerebellum. J Chem Neuroanat 2017; 88:22-32. [PMID: 29113946 DOI: 10.1016/j.jchemneu.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
To provide basic data on the local differences in density of microvessels between various parts of the human brain, including representative grey and white matter structures of the cerebral hemispheres, the brain stem and the cerebellum, we quantified the numerical density NV and the length density LV of microvessels in two human brains. We aimed to correlate the density of microvessels with previously published data on their preferential orientation (anisotropy). Microvessels were identified using immunohistochemistry for laminin in 32 samples harvested from the following brain regions of two adult individuals: the cortex of the telencephalon supplied by the anterior, middle, and posterior cerebral artery; the basal ganglia (putamen and globus pallidus); the thalamus; the subcortical white matter of the telencephalon; the internal capsule; the pons; the cerebellar cortex; and the cerebellar white matter. NV was calculated from the number of vascular branching points and their valence, which were assessed using the optical disector in 20-μm-thick sections. LV was estimated using counting frames applied to routine sections with randomized cutting planes. After correction for shrinkage, NV in the cerebral cortex was 1311±326mm-3 (mean±SD) and LV was 255±119mm-2. Similarly, in subcortical grey matter (which included the basal ganglia and thalamus), NV was 1350±445mm-3 and LV was 328±117mm-2. The vascular networks of cortical and subcortical grey matter were comparable. Their densities were greater than in the white matter, with NV=222±147mm-3 and LV=160±96mm-2. NV was moderately correlated with LV. In parts of brain with greater NV, blood vessels lacked a preferential orientation. Our data were in agreement with other studies on microvessel density focused on specific brain regions, but showed a greater variability, thus mapping the basic differences among various parts of brain. To facilitate the planning of other studies on brain vascularity and to support the development of computational models of human brain circulation based on real microvascular morphology; stereological data in form of continuous variables are made available as supplements.
Collapse
Affiliation(s)
- Tereza Kubíková
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
| | - Petra Kochová
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
| | - Petr Tomášek
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; Department of Forensic Medicine, Second Faculty of Medicine, Charles University, Budinova 2, 180 81 Prague 8, Prague, Czech Republic
| | - Kirsti Witter
- Institute of Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Zbyněk Tonar
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic.
| |
Collapse
|
3
|
Kolinko Y, Krakorova K, Cendelin J, Tonar Z, Kralickova M. Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes. Rev Neurosci 2015; 26:75-93. [PMID: 25337818 DOI: 10.1515/revneuro-2014-0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/25/2014] [Indexed: 11/15/2022]
Abstract
Brain microcirculation plays an important role in the pathogenesis of various brain diseases. Several specific features of the circulation in the brain and its functions deserve special attention. The brain is extremely sensitive to hypoxia, and brain edema is more dangerous than edema in other tissues. Brain vessels are part of the blood-brain barrier, which prevents the penetration of some of the substances in the blood into the brain tissue. Herein, we review the processes of angiogenesis and the changes that occur in the brain microcirculation in the most prevalent neurodegenerative diseases. There are no uniform vascular changes in the neurodegenerative diseases. In some cases, the vascular changes are secondary consequences of the pathological process, but they could also be involved in the pathogenesis of the primary disease and contribute to the degeneration of neurons, based on their quantitative characteristics. Additionally, we described the stereological methods that are most commonly used for generating qualitative and quantitative data to assess changes in the microvascular bed of the brain.
Collapse
|
4
|
Confocal stereology: an efficient tool for measurement of microscopic structures. Cell Tissue Res 2015; 360:13-28. [PMID: 25743691 DOI: 10.1007/s00441-015-2138-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/27/2015] [Indexed: 01/26/2023]
Abstract
Quantitative measurements of geometric forms or counting of objects in microscopic specimens is an essential tool in studies of microstructure. Confocal stereology represents a contemporary approach to the evaluation of microscopic structures by using a combination of stereological methods and confocal microscopy. 3-D images acquired by confocal microscopy can be used for the estimation of geometrical characteristics of microscopic structures by stereological methods, based on the evaluation of optical sections within a thick slice and using computer-generated virtual test probes. Such methods can be used for estimating volume, number, surface area and length using relevant spatial probes, which are generated by specific software. The interactions of the probes with the structure under study are interactively evaluated. An overview of the methods of confocal stereology developed during the past 30 years is presented. Their advantages and pitfalls in comparison with other methods for measurement of geometrical characteristics of microscopic structures are discussed.
Collapse
|
5
|
Janáček J, Čapek M, Michálek J, Karen P, Kubínová L. 3D microscopic imaging and evaluation of tubular tissue architecture. Physiol Res 2014; 63:S49-55. [PMID: 24564665 DOI: 10.33549/physiolres.932679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
3D microscopy and image analysis provide reliable measurements of length, branching, density, tortuosity and orientation of tubular structures in biological samples. We present a survey of methods for analysis of large samples by measurement of local differences in geometrical characteristics. The methods are demonstrated on the structure of the capillary bed in a rat brain.
Collapse
Affiliation(s)
- J Janáček
- Department of Biomathematics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|