1
|
Ríos-Silva M, Pérez M, Luraschi R, Vargas E, Silva-Andrade C, Valdés J, Sandoval JM, Vásquez C, Arenas F. Anaerobiosis favors biosynthesis of single and multi-element nanostructures. PLoS One 2022; 17:e0273392. [PMID: 36206251 PMCID: PMC9543976 DOI: 10.1371/journal.pone.0273392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Herein we report the use of an environmental multimetal(loid)-resistant strain, MF05, to biosynthesize single- or multi-element nanostructures under anaerobic conditions. Inorganic nanostructure synthesis typically requires methodologies and conditions that are harsh and environmentally hazardous. Thus, green/eco-friendly procedures are desirable, where the use of microorganisms and their extracts as bionanofactories is a reliable strategy. First, MF05 was entirely sequenced and identified as an Escherichia coli-related strain with some genetic differences from the traditional BW25113. Secondly, we compared the CdS nanostructure biosynthesis by whole-cell in a design defined minimal culture medium containing sulfite as the only sulfur source to obtain sulfide reduction from a low-cost chalcogen reactant. Under anaerobic conditions, this process was greatly favored, and irregular CdS (ex. 370 nm; em. 520-530 nm) was obtained. When other chalcogenites were tested (selenite and tellurite), only spherical Se0 and elongated Te0 nanostructures were observed by TEM and analyzed by SEM-EDX. In addition, enzymatic-mediated chalcogenite (sulfite, selenite, and tellurite) reduction was assessed by using MF05 crude extracts in anaerobiosis; similar results for nanostructures were obtained; however Se0 and Te0 formation were more regular in shape and cleaner (with less background). Finally, the in vitro nanostructure biosynthesis was assessed with salts of Ag, Au, Cd, and Li alone or in combination with chalcogenites. Several single or binary nanostructures were detected. Our results showed that MF05 is a versatile anaerobic bionanofactory for different types of inorganic NS. synthesis.
Collapse
Affiliation(s)
- Mirtha Ríos-Silva
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Research Center on the Intersection in Plasma Physics, Matter and Complexity, Pmc, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Myriam Pérez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Roberto Luraschi
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | | | - Jorge Valdés
- Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | | | - Claudio Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Vyas Y, Gupta S, Punjabi PB, Ameta C. Biogenesis of Quantum Dots: An Update. ChemistrySelect 2022. [DOI: 10.1002/slct.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yogeshwari Vyas
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Sharoni Gupta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
- Department of Chemistry Aishwarya Post Graduate College affiliated to Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Pinki B. Punjabi
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Chetna Ameta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| |
Collapse
|
3
|
Shi K, Xu X, Li H, Xie H, Chen X, Zhan Y. Biosynthesized Quantum Dots as Improved Biocompatible Tools for Biomedical Applications. Curr Med Chem 2021; 28:496-513. [PMID: 31894739 DOI: 10.2174/0929867327666200102122737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/06/2019] [Accepted: 12/15/2019] [Indexed: 11/22/2022]
Abstract
Quantum Dots (QDs), whose diameters are often limited to 10 nm, have been of interest to researchers for their unique optical characteristics, which are attributed to quantum confinement. Following their early application in the electrical industry as light-emitting diode materials, semiconductor nanocrystals have continued to show great potential in clinical diagnosis and biomedical applications. The conventional physical and chemical pathways for QD syntheses typically require harsh conditions and hazardous reagents, and these products encounter non-hydrophilic problems due to organic capping ligands when they enter the physiological environment. The natural reducing abilities of living organisms, especially microbes, are then exploited to prepare QDs from available metal precursors. Low-cost and eco-friendly biosynthesis approaches have the potential for further biomedical applications which benefit from the good biocompatibility of protein-coated QDs. The surface biomass offers many binding sites to modify substances or target ligands, therefore achieving multiple functions through simple and efficient operations. Biosynthetic QDs could function as bioimaging and biolabeling agents because of their luminescence properties similar to those of chemical QDs. In addition, extensive research has been carried out on the antibacterial activity, metal ion detection and bioremediation. As a result, this review details the advanced progress of biomedical applications of biosynthesized QDs and illustrates these principles as clearly as possible.
Collapse
Affiliation(s)
- Keru Shi
- Engineering Research Center of Molecular & Neuroimaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xinyi Xu
- Engineering Research Center of Molecular & Neuroimaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Hanrui Li
- Engineering Research Center of Molecular & Neuroimaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Hui Xie
- Engineering Research Center of Molecular & Neuroimaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xueli Chen
- Engineering Research Center of Molecular & Neuroimaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular & Neuroimaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
4
|
Ojeda JJ, Merroun ML, Tugarova AV, Lampis S, Kamnev AA, Gardiner PHE. Developments in the study and applications of bacterial transformations of selenium species. Crit Rev Biotechnol 2020; 40:1250-1264. [PMID: 32854560 DOI: 10.1080/07388551.2020.1811199] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microbial bio-transformations of the essential trace element selenium are now recognized to occur among a wide variety of microorganisms. These transformations are used to convert this element into its assimilated form of selenocysteine, which is at the active center of a number of key enzymes, and to produce selenium nanoparticles, quantum dots, metal selenides, and methylated selenium species that are indispensable for biotechnological and bioremediation applications. The focus of this review is to present the state-of-the-art of all aspects of the investigations into the bacterial transformations of selenium species, and to consider the characterization and biotechnological uses of these transformations and their products.
Collapse
Affiliation(s)
- Jesus J Ojeda
- College of Engineering, Swansea University, Systems and Process Engineering Centre, Swansea, UK
| | | | - Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Philip H E Gardiner
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
5
|
Zhang Z, Yan K, Zhang L, Wang Q, Guo R, Yan Z, Chen J. A novel cadmium-containing wastewater treatment method: Bio-immobilization by microalgae cell and their mechanism. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:420-427. [PMID: 31035092 DOI: 10.1016/j.jhazmat.2019.04.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 05/24/2023]
Abstract
Heavy metal cadmium (Cd) has drawn tremendous comcern due to its rigorous environmental and health hazards. Herein, we have presented an efficient and economical strategy for the removal and recycling of hazardous Cd ions using microalgae cells as the bioreactors. Remarkably, the green bio-platform for the bioproduction of CdSe nanoparticles (NPs) was developed depending on their orderly regulated and sustainable cellular environment. The biofabricated CdSe NPs manifested favorable photoluminescence properties, and presented well monodispersed spherical morphology and certain crystallinity structure with mean size of smaller than 7 nm. Especially, the fluorescence "turn off" sensing system based on the CdSe NPs was established to detect Hg2+. The nanosensor enables the quantitative analyses of Hg2+ with a linear range of 0-2.0 μM and a detection limit of 0.021 μM. Furthermore, it was preliminarily speculated that the reducing biomolecules in the algae cells could be involved in the formation of CdSe NPs. This work not only provides new insights into the removal and recycling of hazardous Cd ions, but also brings a promising route for biosynthesis of CdSe NPs.
Collapse
Affiliation(s)
- Zhengwei Zhang
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Yan
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling Zhang
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qian Wang
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruixin Guo
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Yan
- School of Science, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqiu Chen
- School of Science, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|