1
|
Dondi C, Tsikritsis D, Vorng JL, Greenidge G, Kepiro IE, Belsey NA, McMahon G, Gilmore IS, Ryadnov MG, Shaw M. Multiparametric physicochemical analysis of a type 1 collagen 3D cell culture model using light and electron microscopy and mass spectrometry imaging. Sci Rep 2025; 15:9578. [PMID: 40113888 PMCID: PMC11926111 DOI: 10.1038/s41598-025-93700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Three-dimensional cell culture systems underpin cell-based technologies ranging from tissue scaffolds for regenerative medicine to tumor models and organoids for drug screening. However, to realise the full potential of these technologies requires analytical methods able to capture the diverse information needed to characterize constituent cells, scaffold components and the extracellular milieu. Here we describe a multimodal imaging workflow which combines fluorescence, vibrational and second harmonic generation microscopy with secondary ion mass spectrometry imaging and transmission electron microscopy to analyse the morphological, chemical and ultrastructural properties of cell-seeded scaffolds. Using cell nuclei as landmarks we register fluorescence with label-free optical microscopy images and high mass resolution with high spatial resolution secondary ion mass spectrometry images, with an accuracy comparable to the intrinsic spatial resolution of the techniques. We apply these methods to investigate relationships between cell distribution, cytoskeletal morphology, scaffold fiber organisation and biomolecular composition in type I collagen scaffolds seeded with human dermal fibroblasts.
Collapse
Affiliation(s)
- Camilla Dondi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Jean-Luc Vorng
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Gina Greenidge
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Natalie A Belsey
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Greg McMahon
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ian S Gilmore
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Michael Shaw
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
- UCL Hawkes Institute and Department of Computer Science, University College London, London, UK.
| |
Collapse
|
2
|
Hernández-Hatibi S, Borau C, Martínez-Bosch N, Navarro P, García-Aznar JM, Guerrero PE. Quantitative characterization of the 3D self-organization of PDAC tumor spheroids reveals cell type and matrix dependence through advanced microscopy analysis. APL Bioeng 2025; 9:016116. [PMID: 40161492 PMCID: PMC11952832 DOI: 10.1063/5.0242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant tumor-associated stroma composed from pancreatic stellate cells, which play a critical role in tumor progression. Developing accurate in vitro models requires understanding the complex interactions between tumor cells and their microenvironment. In this study, we present a quantitative imaging-based characterization of the three dimensional (3D) self-organization of PDAC tumour spheroids using a microfluidic platform that mimics key aspects of the tumor microenvironment. Our model incorporates collagen type I hydrogels to recreate the extracellular matrix, activated human pancreatic stellate cells (HPSCs), and various tumor cell types. Advanced imaging techniques, including Lattice Lightsheet Microscopy, allowed us to analyze the 3D growth and spatial organization of the spheroids, revealing intricate biomechanical interactions. Our results indicate that alterations in matrix properties-such as stiffness, pore size, and hydraulic permeability-due to variations in collagen concentration significantly influence the growth patterns and organization of PDAC spheroids, depending on tumor subtype and epithelial-mesenchymal phenotype. Higher collagen concentrations promoted larger spheroids in epithelial-like cell lines, while mesenchymal-type cells required increased collagen for self-organization into smaller spheroids. Furthermore, coculture with HPSCs affected spheroid formation distinctly based on each PDAC cell line's genetic and phenotypic traits. HPSCs had opposing effects on epithelial-like cell lines: one cell line exhibited enhanced spheroid growth, while another showed inhibited formation, whereas mesenchymal-like spheroids showed minimal impact. These results provide insights into tumor-stroma interactions, emphasizing the importance of the cell-specific and matrix-dependent factors for advancing our understanding of PDAC progression and informing future therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
3
|
Camacho-Gomez D, Movilla N, Borau C, Martin A, Oñate Salafranca C, Pardo J, Gomez-Benito MJ, Garcia-Aznar JM. An agent-based method to estimate 3D cell migration trajectories from 2D measurements: Quantifying and comparing T vs CAR-T 3D cell migration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108331. [PMID: 39068872 DOI: 10.1016/j.cmpb.2024.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND OBJECTIVE Immune cell migration is one of the key features that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors. Chimeric antigen receptor (CAR) T-cell therapy is a novel strategy in the battle against various cancers. It has been successful in treating hematological tumors, yet it still faces many challenges in the case of solid tumors. In this work, we evaluate the three-dimensional (3D) migration capacity of T and CAR-T cells within dense collagen-based hydrogels. Quantifying three-dimensional (3D) cell migration requires microscopy techniques that may not be readily accessible. Thus, we introduce a straightforward mathematical model designed to infer 3D trajectories of cells from two-dimensional (2D) cell trajectories. METHODS We develop a 3D agent-based model (ABM) that simulates the temporal changes in the direction of migration with an inverse transform sampling method. Then, we propose an optimization procedure to accurately orient cell migration over time to reproduce cell migration from 2D experimental cell trajectories. With this model, we simulate cell migration assays of T and CAR-T cells in microfluidic devices conducted under hydrogels with different concentrations of type I collagen and validate our 3D cell migration predictions with light-sheet microscopy. RESULTS Our findings indicate that CAR-T cell migration is more sensitive to collagen concentration increases than T cells, resulting in a more pronounced reduction in their invasiveness. Moreover, our computational model reveals significant differences in 3D movement patterns between T and CAR-T cells. T cells exhibit migratory behavior in 3D whereas that CAR-T cells predominantly move within the XY plane, with limited movement in the Z direction. However, upon the introduction of a CXCL12 chemical gradient, CAR-T cells present migration patterns that closely resemble those of T cells. CONCLUSIONS This framework demonstrates that 2D projections of 3D trajectories may not accurately represent real migration patterns. Moreover, it offers a tool to estimate 3D migration patterns from 2D experimental data, which can be easily obtained with automatic quantification algorithms. This approach helps reduce the need for sophisticated and expensive microscopy equipment required in laboratories, as well as the computational burden involved in producing and analyzing 3D experimental data.
Collapse
Affiliation(s)
- Daniel Camacho-Gomez
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Nieves Movilla
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Centro Universitario de la Defensa de Zaragoza, Zaragoza, 50090, Spain
| | - Alejandro Martin
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Julian Pardo
- Faculty of Medicine, University of Zaragoza/IIS Aragon, Spain; CIBER of Infectious diseases, IS Carlos III, Madrid, Spain
| | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
4
|
Garcia-Aznar JM. Mechanotherapy as an alternative for cancer treatment. Phys Life Rev 2023; 47:157-158. [PMID: 39491437 DOI: 10.1016/j.plrev.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Affiliation(s)
- J M Garcia-Aznar
- Aragon Institute of Engineering Research (I3A), Multiscale in Mechanical and Biological Engineering (M2BE), Universidad de Zaragoza, Zaragoza, Spain; School of Engineering and Architecture (EINA), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain.
| |
Collapse
|
5
|
Hewavidana Y, Balci MN, Gleadall A, Pourdeyhimi B, Silberschmidt VV, Demirci E. Assessing Crimp of Fibres in Random Networks with 3D Imaging. Polymers (Basel) 2023; 15:polym15041050. [PMID: 36850332 PMCID: PMC9966919 DOI: 10.3390/polym15041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The analysis of fibrous structures using micro-computer tomography (µCT) is becoming more important as it provides an opportunity to characterise the mechanical properties and performance of materials. This study is the first attempt to provide computations of fibre crimp for various random fibrous networks (RFNs) based on µCT data. A parametric algorithm was developed to compute fibre crimp in fibres in a virtual domain. It was successfully tested for six different X-ray µCT models of nonwoven fabrics. Computations showed that nonwoven fabrics with crimped fibres exhibited higher crimp levels than those with non-crimped fibres, as expected. However, with the increased fabric density of the non-crimped nonwovens, fibres tended to be more crimped. Additionally, the projected fibre crimp was computed for all three major 2D planes, and the obtained results were statistically analysed. Initially, the algorithm was tested for a small-size, nonwoven model containing only four fibres. The fraction of nearly straight fibres was computed for both crimped and non-crimped fabrics. The mean value of the fibre crimp demonstrated that fibre segments between intersections were almost straight. However, it was observed that there were no perfectly straight fibres in the analysed RFNs. This study is applicable to approach employing a finite-element analysis (FEA) and computational fluid dynamics (CFD) to model/analyse RFNs.
Collapse
Affiliation(s)
- Yasasween Hewavidana
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Mehmet N. Balci
- Department of Mechanical Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Andrew Gleadall
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Behnam Pourdeyhimi
- The Nonwovens Institute, North Carolina State University, 1010 Main Campus Dr, Raleigh, NC 27606, USA
| | - Vadim V. Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Emrah Demirci
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
6
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Collagen Remodeling along Cancer Progression Providing a Novel Opportunity for Cancer Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms231810509. [PMID: 36142424 PMCID: PMC9502421 DOI: 10.3390/ijms231810509] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a significant factor in cancer progression. Collagens, as the main component of the ECM, are greatly remodeled alongside cancer development. More and more studies have confirmed that collagens changed from a barrier to providing assistance in cancer development. In this course, collagens cause remodeling alongside cancer progression, which in turn, promotes cancer development. The interaction between collagens and tumor cells is complex with biochemical and mechanical signals intervention through activating diverse signal pathways. As the mechanism gradually clears, it becomes a new target to find opportunities to diagnose and treat cancer. In this review, we investigated the process of collagen remodeling in cancer progression and discussed the interaction between collagens and cancer cells. Several typical effects associated with collagens were highlighted in the review, such as fibrillation in precancerous lesions, enhancing ECM stiffness, promoting angiogenesis, and guiding invasion. Then, the values of cancer diagnosis and prognosis were focused on. It is worth noting that several generated fragments in serum were reported to be able to be biomarkers for cancer diagnosis and prognosis, which is beneficial for clinic detection. At a glance, a variety of reported biomarkers were summarized. Many collagen-associated targets and drugs have been reported for cancer treatment in recent years. The new targets and related drugs were discussed in the review. The mass data were collected and classified by mechanism. Overall, the interaction of collagens and tumor cells is complicated, in which the mechanisms are not completely clear. A lot of collagen-associated biomarkers are excavated for cancer diagnosis. However, new therapeutic targets and related drugs are almost in clinical trials, with merely a few in clinical applications. So, more efforts are needed in collagens-associated studies and drug development for cancer research and treatment.
Collapse
|
8
|
Pérez-Rodríguez S, Borau C, García-Aznar JM, Gonzalo-Asensio J. A microfluidic-based analysis of 3D macrophage migration after stimulation by Mycobacterium, Salmonella and Escherichia. BMC Microbiol 2022; 22:211. [PMID: 36045335 PMCID: PMC9429415 DOI: 10.1186/s12866-022-02623-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.
Collapse
|
9
|
Merino-Casallo F, Gomez-Benito MJ, Martinez-Cantin R, Garcia-Aznar JM. A mechanistic protrusive-based model for 3D cell migration. Eur J Cell Biol 2022; 101:151255. [PMID: 35843121 DOI: 10.1016/j.ejcb.2022.151255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cell migration is essential for a variety of biological processes, such as embryogenesis, wound healing, and the immune response. After more than a century of research-mainly on flat surfaces-, there are still many unknowns about cell motility. In particular, regarding how cells migrate within 3D matrices, which more accurately replicate in vivo conditions. We present a novel in silico model of 3D mesenchymal cell migration regulated by the chemical and mechanical profile of the surrounding environment. This in silico model considers cell's adhesive and nuclear phenotypes, the effects of the steric hindrance of the matrix, and cells ability to degradate the ECM. These factors are crucial when investigating the increasing difficulty that migrating cells find to squeeze their nuclei through dense matrices, which may act as physical barriers. Our results agree with previous in vitro observations where fibroblasts cultured in collagen-based hydrogels did not durotax toward regions with higher collagen concentrations. Instead, they exhibited an adurotactic behavior, following a more random trajectory. Overall, cell's migratory response in 3D domains depends on its phenotype, and the properties of the surrounding environment, that is, 3D cell motion is strongly dependent on the context.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ruben Martinez-Cantin
- Robotics, Perception and Real Time Group (RoPeRT), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Computer Science and System Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
10
|
Moghaddam AO, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Johnson AJW. Heterogeneous microstructural changes of the cervix influence cervical funneling. Acta Biomater 2022; 140:434-445. [PMID: 34958969 PMCID: PMC8828692 DOI: 10.1016/j.actbio.2021.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The cervix acts as a dynamic barrier between the uterus and vagina, retaining the fetus during pregnancy and allowing birth at term. Critical to this function, the physical properties of the cervix change, or remodel, but abnormal remodeling can lead to preterm birth (PTB). Although cervical remodeling has been studied, the complex 3D cervical microstructure has not been well-characterized. In this complex, dynamic, and heterogeneous tissue microenvironment, the microstructural changes are likely also heterogeneous. Using quantitative, 3D, second-harmonic generation microscopy, we demonstrate that rat cervical remodeling during pregnancy is not uniform across the cervix; the collagen fibers orient progressively more perpendicular to the cervical canals in the inner cervical zone, but do not reorient in other regions. Furthermore, regions that are microstructurally distinct early in pregnancy become more similar as pregnancy progresses. We use a finite element simulation to show that heterogeneous regional changes influence cervical funneling, an important marker of increased risk for PTB; the internal cervical os shows ∼6.5x larger radial displacement when fibers in the inner cervical zone are parallel to the cervical canals compared to when fibers are perpendicular to the canals. Our results provide new insights into the microstructural and tissue-level cervical changes that have been correlated with PTB and motivate further clinical studies exploring the origins of cervical funneling. STATEMENT OF SIGNIFICANCE: Cervical funneling, or dilation of the internal cervical os, is highly associated with increased risk of preterm birth. This study explores the 3D microstructural changes of the rat cervix during pregnancy and illustrates how these changes influence cervical funneling, assuming similar evolution in rats and humans. Quantitative imaging showed that microstructural remodeling during pregnancy is nonuniform across cervical regions and that initially distinct regions become more similar. We report, for the first time, that remodeling of the inner cervical zone can influence the dilation of the internal cervical os and allow the cervix to stay closed despite increased intrauterine pressure. Our results suggest a possible relationship between the microstructural changes of this zone and cervical funneling, motivating further clinical investigations.
Collapse
Affiliation(s)
- A. Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Z. Lin
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - M. Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - H. Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - B. L. McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL 60612, USA
| | - K. C. Toussaint
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - A. J. Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Corresponding author at: 2101A Mechanical Engineering Laboratory MC-244, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, United States.
| |
Collapse
|
11
|
Wu X, Tang T, Wei Y, Cummins KA, Wood DK, Pang H. Extracellular Vesicles Mediate the Intercellular Exchange of Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102441. [PMID: 35243822 PMCID: PMC8895114 DOI: 10.1002/advs.202102441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/09/2021] [Indexed: 05/06/2023]
Abstract
To exert their therapeutic effects, nanoparticles (NPs) often need to travel into the tissues composed of multilayered cells. Accumulative evidence has revealed the crucial role of transcellular transport route (entry into one cell, exocytosis, and re-entry into another) in this process. While NP endocytosis and subcellular transport are intensively characterized, the exocytosis and re-entry steps are poorly understood, which becomes a barrier for NP delivery into complex tissues. Here, the authors term the exocytosis and re-entry steps together as intercellular exchange. A collagen-based three-dimension assay is developed to specifically quantify the intercellular exchange of NPs, and distinguish the contributions of several potential mechanisms. The authors show that NPs can be exocytosed freely or enclosed inside extracellular vesicles (EVs) for re-entry, while direct cell-cell contact is hardly involved. EVs account for a significant fraction of NP intercellular exchange, and its importance in NP transport is demonstrated in vitro and in vivo. While freely released NPs engage with the same receptors for re-entry, EV-enclosed ones bypass this dependence. These studies provide an easy and precise system to investigate the intercellular exchange stage of NP delivery, and shed the first light in the importance of EVs in NP transport between cells and into complex tissues.
Collapse
Affiliation(s)
- Xian Wu
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Tang Tang
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Yushuang Wei
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Katherine A. Cummins
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - David K. Wood
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Hong‐Bo Pang
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
12
|
Pérez-Rodríguez S, Huang SA, Borau C, García-Aznar JM, Polacheck WJ. Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. BIOMICROFLUIDICS 2021; 15:054102. [PMID: 34548891 PMCID: PMC8443302 DOI: 10.1063/5.0061997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 05/08/2023]
Abstract
Extravasation of circulating cells is an essential process that governs tissue inflammation and the body's response to pathogenic infection. To initiate anti-inflammatory and phagocytic functions within tissues, immune cells must cross the vascular endothelial barrier from the vessel lumen to the subluminal extracellular matrix. In this work, we present a microfluidic approach that enables the recreation of a three-dimensional, perfused endothelial vessel formed by human endothelial cells embedded within a collagen-rich matrix. Monocytes are introduced into the vessel perfusate, and we investigate the role of luminal flow and collagen concentration on extravasation. In vessels conditioned with the flow, increased monocyte adhesion to the vascular wall was observed, though fewer monocytes extravasated to the collagen hydrogel. Our results suggest that the lower rates of extravasation are due to the increased vessel integrity and reduced permeability of the endothelial monolayer. We further demonstrate that vascular permeability is a function of collagen hydrogel mass concentration, with increased collagen concentrations leading to elevated vascular permeability and increased extravasation. Collectively, our results demonstrate that extravasation of monocytes is highly regulated by the structural integrity of the endothelial monolayer. The microfluidic approach developed here allows for the dissection of the relative contributions of these cues to further understand the key governing processes that regulate circulating cell extravasation and inflammation.
Collapse
Affiliation(s)
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
13
|
Designing Hydrogel-Based Bone-On-Chips for Personalized Medicine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent development of bone-on-chips (BOCs) holds the main advantage of requiring a low quantity of cells and material, compared to traditional In Vitro models. By incorporating hydrogels within BOCs, the culture system moved to a three dimensional culture environment for cells which is more representative of bone tissue matrix and function. The fundamental components of hydrogel-based BOCs, namely the cellular sources, the hydrogel and the culture chamber, have been tuned to mimic the hematopoietic niche in the bone aspirate marrow, cancer bone metastasis and osteo/chondrogenic differentiation. In this review, we examine the entire process of developing hydrogel-based BOCs to model In Vitro a patient specific situation. First, we provide bone biological understanding for BOCs design and then how hydrogel structural and mechanical properties can be tuned to meet those requirements. This is followed by a review on hydrogel-based BOCs, developed in the last 10 years, in terms of culture chamber design, hydrogel and cell source used. Finally, we provide guidelines for the definition of personalized pathological and physiological bone microenvironments. This review covers the information on bone, hydrogel and BOC that are required to develop personalized therapies for bone disease, by recreating clinically relevant scenarii in miniaturized devices.
Collapse
|
14
|
Xydias D, Ziakas G, Psilodimitrakopoulos S, Lemonis A, Bagli E, Fotsis T, Gravanis A, Tzeranis DS, Stratakis E. Three-dimensional characterization of collagen remodeling in cell-seeded collagen scaffolds via polarization second harmonic generation. BIOMEDICAL OPTICS EXPRESS 2021; 12:1136-1153. [PMID: 33680563 PMCID: PMC7901316 DOI: 10.1364/boe.411501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 05/08/2023]
Abstract
In this study, we use non-linear imaging microscopy to characterize the structural properties of porous collagen-GAG scaffolds (CGS) seeded with human umbilical vein endothelial cells (HUVECs), as well as human mesenchymal stem cells (hMSCs), a co-culture previously reported to form vessel-like structures inside CGS. The evolution of the resulting tissue construct was monitored over 10 days via simultaneous two- and three-photon excited fluorescence microscopy. Time-lapsed 2- and 3-photon excited fluorescence imaging was utilized to monitor the temporal evolution of the vascular-like structures up to 100 µm inside the scaffold up to 10 days post-seeding. 3D polarization-dependent second harmonic generation (PSHG) was utilized to monitor collagen-based scaffold remodeling and determine collagen fibril orientation up to 200 µm inside the scaffold. We demonstrate that polarization-dependent second harmonic generation can provide a novel way to quantify the reorganization of the collagen architecture in CGS simultaneously with key biomechanical interactions between seeded cells and CGS that regulate the formation of vessel-like structures inside 3D tissue constructs. A comparison between samples at different days in vitro revealed that gradually, the scaffolds developed an orthogonal net-like architecture, previously found in real skin.
Collapse
Affiliation(s)
- Dionysios Xydias
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Greece
- Department of Materials Science and Technology, School of Sciences and Engineering, University of Crete, Greece
| | - Georgios Ziakas
- Department of Materials Science and Technology, School of Sciences and Engineering, University of Crete, Greece
| | | | - Andreas Lemonis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Greece
| | - Eleni Bagli
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Theodore Fotsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Achille Gravanis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece
- Department of Pharmacology, School of Medicine, University of Crete, Greece
| | - Dimitrios S. Tzeranis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Greece
- Department of Physics, School of Sciences and Engineering, University of Crete, Greece
| |
Collapse
|
15
|
Environmental Restrictions: A New Concept Governing HIV-1 Spread Emerging from Integrated Experimental-Computational Analysis of Tissue-Like 3D Cultures. Cells 2020; 9:cells9051112. [PMID: 32365826 PMCID: PMC7291240 DOI: 10.3390/cells9051112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
HIV-1 can use cell-free and cell-associated transmission modes to infect new target cells, but how the virus spreads in the infected host remains to be determined. We recently established 3D collagen cultures to study HIV-1 spread in tissue-like environments and applied iterative cycles of experimentation and computation to develop a first in silico model to describe the dynamics of HIV-1 spread in complex tissue. These analyses (i) revealed that 3D collagen environments restrict cell-free HIV-1 infection but promote cell-associated virus transmission and (ii) defined that cell densities in tissue dictate the efficacy of these transmission modes for virus spread. In this review, we discuss, in the context of the current literature, the implications of this study for our understanding of HIV-1 spread in vivo, which aspects of in vivo physiology this integrated experimental-computational analysis takes into account, and how it can be further improved experimentally and in silico.
Collapse
|
16
|
Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv 2020; 10:43682-43703. [PMID: 35519701 PMCID: PMC9058401 DOI: 10.1039/d0ra08566a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogel-based artificial scaffolds and its incorporation with microfluidic devices play a vital role in shifting in vitro models from two-dimensional (2D) cell culture to in vivo like three-dimensional (3D) cell culture
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| | - Peter Little
- School of Pharmacy
- The University of Queensland
- Brisbane
- Australia
| | - Zhiyong Li
- School of Mechanical Medical & Process Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| |
Collapse
|