1
|
Nozal V, García‐Rubia A, Cuevas EP, Pérez C, Tosat‐Bitrián C, Bartolomé F, Carro E, Ramírez D, Palomo V, Martínez A. From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer's Disease using Protein-Templated Synthesis. Angew Chem Int Ed Engl 2021; 60:19344-19354. [PMID: 34169618 PMCID: PMC8457121 DOI: 10.1002/anie.202106295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Indexed: 11/24/2022]
Abstract
Multitarget directed ligands (MTDLs) are arising as promising tools to tackle complex diseases. The main goal of this work is to create powerful modulating agents for neurodegenerative disorders. To achieve this aim, we have combined fragments that inhibit key protein kinases involved in the main pathomolecular pathways of Alzheimer's disease (AD) such as tau aggregation, neuroinflammation and decreased neurogenesis, whilst looking for a third action in beta-secretase (BACE1), responsible of β-amyloid production. We obtained well-balanced MTDLs with in vitro activity in three different relevant targets and efficacy in two cellular models of AD. Furthermore, computational studies confirmed how these compounds accommodate adequately into the long and rather narrow BACE1 catalytic site. Finally, we employed in situ click chemistry using BACE1 as protein template as a versatile synthetic tool that allowed us to obtain further MTDLs.
Collapse
Affiliation(s)
- Vanesa Nozal
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
| | - Alfonso García‐Rubia
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos III28031MadridSpain
| | - Eva P. Cuevas
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
| | - Concepción Pérez
- Instituto de Química Médica-CSIC)Juan de la Cierva 328006MadridSpain
| | - Carlota Tosat‐Bitrián
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
| | - Fernando Bartolomé
- Hospital Universitario 12 de Octubre Research Institute (imas12)Group of Neurodegenerative DiseasesJuan de la Cierva 328006MadridSpain
| | - Eva Carro
- Hospital Universitario 12 de Octubre Research Institute (imas12)Group of Neurodegenerative DiseasesJuan de la Cierva 328006MadridSpain
| | - David Ramírez
- Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileLlano Subercaseaux2801—piso 6SantiagoChile
| | - Valle Palomo
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos III28031MadridSpain
| | - Ana Martínez
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos III28031MadridSpain
| |
Collapse
|
2
|
Nozal V, García‐Rubia A, Cuevas EP, Pérez C, Tosat‐Bitrián C, Bartolomé F, Carro E, Ramírez D, Palomo V, Martínez A. From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer's Disease using Protein‐Templated Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanesa Nozal
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alfonso García‐Rubia
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III 28031 Madrid Spain
| | - Eva P. Cuevas
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Concepción Pérez
- Instituto de Química Médica-CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - Carlota Tosat‐Bitrián
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Fernando Bartolomé
- Hospital Universitario 12 de Octubre Research Institute (imas12) Group of Neurodegenerative Diseases Juan de la Cierva 3 28006 Madrid Spain
| | - Eva Carro
- Hospital Universitario 12 de Octubre Research Institute (imas12) Group of Neurodegenerative Diseases Juan de la Cierva 3 28006 Madrid Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas Universidad Autónoma de Chile Llano Subercaseaux 2801—piso 6 Santiago Chile
| | - Valle Palomo
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III 28031 Madrid Spain
| | - Ana Martínez
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III 28031 Madrid Spain
| |
Collapse
|
3
|
Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85:82-96. [DOI: 10.1016/j.bioorg.2018.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
|
4
|
Uddin I, Taha M, Rahim F, Wadood A. Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorg Chem 2018; 78:324-331. [DOI: 10.1016/j.bioorg.2018.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
|
5
|
A benzothiazole/piperazine derivative with acetylcholinesterase inhibitory activity: Improvement in streptozotocin-induced cognitive deficits in rats. Pharmacol Rep 2017; 69:1349-1356. [DOI: 10.1016/j.pharep.2017.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/05/2017] [Accepted: 06/16/2017] [Indexed: 01/12/2023]
|
6
|
Wang Y, Wang H, Chen HZ. AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer's Disease. Curr Neuropharmacol 2016; 14:364-75. [PMID: 26786145 PMCID: PMC4876592 DOI: 10.2174/1570159x14666160119094820] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elder people, characterised by a progressive decline in memory as a result of an impairment of cholinergic neurotransmission. To date acetylcholinesterase inhibitors (AChEIs) have become the most prescribed drugs for the symptomatic treatment of mild to moderate AD. However, the traditional “one molecule-one target” paradigm is not sufficient and appropriate to yield the desired therapeutic efficacy since multiple factors, such as amyloid-β (Aβ) deposits, neuroinflammation, oxidative stress, and decreased levels of acetylcholine (ACh) have been thought to play significant roles in the AD pathogenesis. New generation of multi-target drugs is earnestly demanded not only for ameliorating symptoms but also for modifying the disease. Herein, we delineated the catalytic and non-catalytic functions of AChE, and summarized the works of our group and others in research and development of novel AChEI-based multi-target-directed ligands (MTDLs), such as dual binding site AChEIs and multi-target AChEIs inhibiting Aβ aggregation, regulating Aβ procession, antagonizing platelet-activating factor (PAF) receptor, scavenging oxygen radical, chelating metal ions, inhibiting monoamine oxidase B (MAO-B), blocking N-methyl-D-aspartic acid (NMDA) receptor and others.
Collapse
Affiliation(s)
| | - Hao Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| | - Hong-zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| |
Collapse
|
7
|
Hung TM, Lee JS, Chuong NN, Kim JA, Oh SH, Woo MH, Choi JS, Min BS. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II). Chem Biol Interact 2015; 240:74-82. [PMID: 26297990 DOI: 10.1016/j.cbi.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/05/2015] [Accepted: 07/24/2015] [Indexed: 11/18/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors increase the availability of acetylcholine in central cholinergic synapses and are the most promising drugs currently available for the treatment of Alzheimer's disease (AD). Our screening study indicated that the water fraction of the methanolic extract of Lycopodiella cernua (L.) Pic. Serm. significantly inhibited AChE in vitro. Bioassay-guided fractionation led to the isolation of a new lignan glycoside, lycocernuaside A (12), and fourteen known compounds (1-11 and 13-15). Compound 7 exhibited the most potent AChE inhibitory activity with an IC50 value of 0.23 μM. Compound 15 had the most potent inhibitory activity against BChE and BACE1 with IC50 values of 0.62 and 2.16 μM, respectively. Compounds 4 and 7 showed mixed- and competitive-type AChE inhibition. Compound 7 noncompetitively inhibited BChE whereas 15 showed competitive and 8, 13, and 14 showed mixed-type inhibition. The docking results for complexes with AChE or BChE revealed that inhibitors 4, 7, and 15 stably positioned themselves in several pocket/catalytic domains of the AChE and BChE residues.
Collapse
Affiliation(s)
- Tran Manh Hung
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, South Korea; Division of Pharmaceutical Chemistry, Faculty of Chemistry, University of Science, Vietnam National University-HoChiMinh City, 227 Nguyen Van Cu Street, District 5, HoChiMinh City, Viet Nam
| | - Joo Sang Lee
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, South Korea
| | - Nguyen Ngoc Chuong
- Faculty of Traditional Medicine, HoChiMinh City University of Medicine and Pharmacy, 221B Hoang Van Thu Street, Phu Nhuan District, HoChiMinh City, Viet Nam
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Sang Ho Oh
- Korean BioInformation Center (KOBIC), Daejeon 305-806, South Korea
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, South Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, South Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 712-702, South Korea.
| |
Collapse
|
8
|
Meena P, Nemaysh V, Khatri M, Manral A, Luthra PM, Tiwari M. Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease. Bioorg Med Chem 2015; 23:1135-48. [DOI: 10.1016/j.bmc.2014.12.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022]
|
9
|
Meena P, Manral A, Saini V, Tiwari M. Protective effects of a piperazine derivative [N-{4-[4-(2-methoxy-phenyl)-piperazin-1-yl]-phenyl} carbamic acid ethyl ester] against aluminium-induced neurotoxicity: insights from in silico and in vivo studies. Neurotox Res 2014; 27:314-27. [PMID: 25403519 DOI: 10.1007/s12640-014-9499-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 01/14/2023]
Abstract
The cholinergic hypothesis associated with Alzheimer's disease has spurred the development of numerous structural classes of compounds with different pharmacological profiles aimed at increasing central cholinergic neurotransmission. In the present study, six synthetic piperazine derivatives D1-D6 were screened for their efficacy as acetylcholinesterase inhibitors (AChEIs) through in silico and in vitro studies. Compound D2 was found to be a potential AChEI with adequate pharmacokinetic properties, as supported by in silico study. Further, in vivo studies were designed to examine the protective effect of piperazine derivative D2 (3 and 5 mg/kg for 6 weeks) in ameliorating the alterations induced by aluminium chloride (AlCl(3)) on behavioural and neurochemical indices. Behavioural tests (Morris water maze and elevated plus maze) revealed significant alterations in the short-term memory and anxiety levels in rats treated with AlCl(3), which was further improved after D2 treatment. Further, D2 treatment attenuated the neurotoxic effects of AlCl(3) as shown by the improvement in rats performance in Water maze test and in lowering AChE activity. Besides preventing lipid peroxidation and protein damage, changes in the levels of endogenous antioxidant enzymes (GST, GPx, GR and GSH) associated with AlCl3 administration were also restored upon treatment with D2. Thus, our results support the neuroprotective potential of compound D2, thus validating its use in alleviating toxic effects of aluminium.
Collapse
Affiliation(s)
- Poonam Meena
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | | | |
Collapse
|
10
|
Shao BY, Xia Z, Xie Q, Ge XX, Zhang WW, Sun J, Jiang P, Wang H, Le WD, Qiu ZB, Lu Y, Chen HZ. Meserine, a novel carbamate AChE inhibitor, ameliorates scopolamine-induced dementia and alleviates amyloidogenesis of APP/PS1 transgenic mice. CNS Neurosci Ther 2013; 20:165-71. [PMID: 24279603 DOI: 10.1111/cns.12183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 11/27/2022] Open
Abstract
AIMS To investigate whether Meserine, a novel phenylcarbamate derivative of (-)-meptazinol, possesses beneficial activities against cholinergic deficiency and amyloidogenesis, the two major pathological characteristics of Alzheimer's disease (AD). METHODS Ellman's assay and Morris water maze were used to detect acetylcholinesterase (AChE) activity and evaluate spatial learning and memory ability, respectively. Both high content screening and Western blotting were carried out to detect β-amyloid precursor protein (APP), while RT-PCR and ELISA were conducted to detect APP-mRNA and β-amyloid peptide (Aβ). RESULTS In scopolamine-induced dementia mice, Meserine (1 mg/kg, i.p.) significantly ameliorated spatial learning and memory deficits, which was consistent with its in vitro inhibitory ability against AChE (recombinant human AChE, IC50 = 274 ± 49 nM). Furthermore, Meserine (7.5 mg/kg) injected intraperitoneally once daily for 3 weeks lowered APP level by 28% and Aβ42 level by 42% in APP/PS1 transgenic mouse cerebrum. This APP modulation action might be posttranscriptional, as Meserine reduced APP by about 30% in SH-SY5Y-APP695 cells but did not alter APP-mRNA level. And both APP and Aβ42 lowering action of Meserine maintained longer than that of rivastigmine. CONCLUSION Meserine executes dual actions against cholinergic deficiency and amyloidogenesis and provides a promising lead compound for symptomatic and modifying therapy of AD.
Collapse
Affiliation(s)
- Bi-Yun Shao
- Department of Pharmacology & Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Özkay ÜD, Can ÖD, Özkay Y, Öztürk Y. Effect of benzothiazole/piperazine derivatives on intracerebroventricular streptozotocin-induced cognitive deficits. Pharmacol Rep 2012; 64:834-47. [DOI: 10.1016/s1734-1140(12)70878-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/26/2012] [Indexed: 11/16/2022]
|
12
|
León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease. Med Res Rev 2011; 33:139-89. [PMID: 21793014 DOI: 10.1002/med.20248] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With 27 million cases worldwide documented in 2006, Alzheimer's disease (AD) constitutes an overwhelming health, social, economic, and political problem to nations. Unless a new medicine capable to delay disease progression is found, the number of cases will reach 107 million in 2050. So far, the therapeutic paradigm one-compound-one-target has failed. This could be due to the multiple pathogenic mechanisms involved in AD including amyloid β (Aβ) aggregation to form plaques, τ hyperphosphorylation to disrupt microtubule to form neurofibrillary tangles, calcium imbalance, enhanced oxidative stress, impaired mitochondrial function, apoptotic neuronal death, and deterioration of synaptic transmission, particularly at cholinergic neurons. Approximately 100 compounds are presently been investigated directed to single targets, namely inhibitors of β and γ secretase, vaccines or antibodies that clear Aβ, metal chelators to inhibit Aβ aggregation, blockers of glycogen synthase kinase 3β, enhancers of mitochondrial function, antioxidants, modulators of calcium-permeable channels such as voltage-dependent calcium channels, N-methyl-D-aspartate receptors for glutamate, or enhancers of cholinergic neurotransmission such as inhibitors of acetylcholinesterase or butyrylcholinesterase. In view of this complex pathogenic mechanisms, and the successful treatment of chronic diseases such as HIV or cancer, with multiple drugs having complementary mechanisms of action, the concern is growing that AD could better be treated with a single compound targeting two or more of the pathogenic mechanisms leading to neuronal death. This review summarizes the current therapeutic strategies based on the paradigm one-compound-various targets to treat AD. A treatment that delays disease onset and/or progression by 5 years could halve the number of people requiring institutionalization and/or dying from AD.
Collapse
Affiliation(s)
- Rafael León
- Department of Chemistry, University of Cambridge, Cambridge, Lensfield road, Cambridge CB2 1EW, United Kingdom.
| | | | | |
Collapse
|