1
|
Kroeze Y, Peeters D, Boulle F, van den Hove DLA, van Bokhoven H, Zhou H, Homberg JR. Long-term consequences of chronic fluoxetine exposure on the expression of myelination-related genes in the rat hippocampus. Transl Psychiatry 2015; 5:e642. [PMID: 26393488 PMCID: PMC5068807 DOI: 10.1038/tp.2015.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/14/2022] Open
Abstract
The selective serotonin reuptake inhibitor (SSRI) fluoxetine is widely prescribed for the treatment of symptoms related to a variety of psychiatric disorders. After chronic SSRI treatment, some symptoms remediate on the long term, but the underlying mechanisms are not yet well understood. Here we studied the long-term consequences (40 days after treatment) of chronic fluoxetine exposure on genome-wide gene expression. During the treatment period, we measured body weight; and 1 week after treatment, cessation behavior in an SSRI-sensitive anxiety test was assessed. Gene expression was assessed in hippocampal tissue of adult rats using transcriptome analysis and several differentially expressed genes were validated in independent samples. Gene ontology analysis showed that upregulated genes induced by chronic fluoxetine exposure were significantly enriched for genes involved in myelination. We also investigated the expression of myelination-related genes in adult rats exposed to fluoxetine at early life and found two myelination-related genes (Transferrin (Tf) and Ciliary neurotrophic factor (Cntf)) that were downregulated by chronic fluoxetine exposure. Cntf, a neurotrophic factor involved in myelination, showed regulation in opposite direction in the adult versus neonatally fluoxetine-exposed groups. Expression of myelination-related genes correlated negatively with anxiety-like behavior in both adult and neonatally fluoxetine-exposed rats. In conclusion, our data reveal that chronic fluoxetine exposure causes on the long-term changes in expression of genes involved in myelination, a process that shapes brain connectivity and contributes to symptoms of psychiatric disorders.
Collapse
Affiliation(s)
- Y Kroeze
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - D Peeters
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - F Boulle
- School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - D L A van den Hove
- School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - H van Bokhoven
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - H Zhou
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Kobayashi K, Haneda E, Higuchi M, Suhara T, Suzuki H. Chronic fluoxetine selectively upregulates dopamine D₁-like receptors in the hippocampus. Neuropsychopharmacology 2012; 37:1500-8. [PMID: 22278095 PMCID: PMC3327854 DOI: 10.1038/npp.2011.335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dentate gyrus of the hippocampus has been implicated in mechanisms of action of selective serotonin reuptake inhibitors (SSRIs). We have recently demonstrated that the SSRI fluoxetine can reverse the state of maturation of the adult dentate granule cells and enhances serotonin 5-HT₄ receptor-mediated synaptic potentiation at the synapses formed by their mossy fiber axons. Here, we show that fluoxetine can induce long-lasting enhancement of dopaminergic modulation at the mossy fiber synapse. Synaptic responses arising from the mossy fiber-CA3 pyramidal cell synapse were recorded using acute mouse hippocampal slices. Dopamine potentiates mossy fiber synaptic transmission by activating D₁-like receptors. Chronic fluoxetine treatment induced a prominent increase in the magnitude of dopamine-induced synaptic potentiation, and this effect was maintained at least up to 1 month after withdrawal of fluoxetine. Quantitative autoradiography revealed that binding of the D₁-like receptor ligand [³H]SCH23390 was selectively increased in the dentate gyrus and along the mossy fiber in fluoxetine-treated mice. However, binding of the 5-HT₄ receptor ligand [³H]GR113808 was not significantly changed. These results suggest that chronic fluoxetine enhanced the dopaminergic modulation at least in part by upregulating expression of D₁-like receptors, while the enhanced serotonergic modulation may be mediated by modifications of downstream signaling pathways. These enhanced monoaminergic modulations would greatly increase excitatory drive to the hippocampal circuit through the dentate gyrus. The highly localized upregulation of D₁-like receptors further supports the importance of the dentate gyrus in the mechanism of action of SSRIs.
Collapse
Affiliation(s)
- Katsunori Kobayashi
- Department of Pharmacology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan.
| | - Eisuke Haneda
- Department of Pharmacology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Makoto Higuchi
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Tetsuya Suhara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Saitama, Japan
| |
Collapse
|